PSSG Draft 17

STANDARDS PROJECT

Draft Standard for Information Technology—
Portable Operating System Interface (POSIX)—
Part 1:
System Application Program
Interface (API)— Amendment #:
Protection, Audit and Control Interfaces [C Language]

Sponsor

Portable Applications Standards Committee
of the
IEEE Computer Society

Work Item Number: JTC1 22.42 %

Abstract: IEEE Std 1003.1e is part of the POSIX series of standards. It defines
security interfaces to open systems for access control lists, audit, separation of +
privilege (capabilities), mandatory access control, and information label mechan- +
isms. This standard is stated in terms of its C binding.

Keywords: auditing, access control lists, application portability, capability, +
information labels, mandatory access control, privilege, open systems, operating
systems, portable application, POSIX, POSIX.1, security, user portability

PSSG /D17
October 1997

Copyright [0 1997 by the Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street,
New York, NY 10017, USA
All rights reserved.

ISBN-xxxXX-XXXXX-X

Library of Congress Catalog Number 90-xxxxx

IEEE Draft P1003.1e, Copyright (0 IEEE.
All Rights Reserved by IEEE.
The IEEE disclaims any responsibility or liability resulting from the
placement and use of this document.
This copyrighted document may be downloaded for personal use by one (1)
individual user.
No further copying or distribution is permitted without the express written
permission or an appropriate license from the IEEE.

This is a withdrawn IEEE Standards Draft.

Permission is hereby granted for IEEE Standards Committee participants to
reproduce this document for purposes of IEEE standardization activities.
Permission is also granted for member bodies and technical committees of

ISO and IEC to reproduce this document for purposes of developing a
national position.

Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this
document for these or other uses, must contact the IEEE Standards

Department for the appropriate license.
Use of information contained in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions

445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

October 1997 XXXXXXX

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Foreword

NOTE: This foreword is not a normative part of the standard and is included for informative pur-
poses only.

The purpose of this standard is to define a standard interface and environment
for Computer Operating Systems that require certain security mechanisms. The
standard is intended for system implementors and application software develop-
ers. It is an extension to IEEE Std 1003.1-1990.

Organization of the Standard

The standard is divided into several parts:
— Revisions to the General Section (Section 1)
— Revisions to Terminology and General Requirements (Section 2)
— Revisions to Process Primitives (Section 3)
— Revisions to Process Environment (Section 4)
— Revisions to Files and Directories (Section 5)
— Revisions to Input and Output Primitives (Section 6)

— Revisions to Language Specific Services for C Programming Language (Sec-
tion 8)

— Access Control Lists (Section 23)

— Audit (Section 24)

— Capability (Section 25)

— Mandatory Access Control (Section 26)

— Information Labeling (Section 27)

— Annex B - Revisions to Rationale and Notes

— Annex F - Ballot Instructions

Conformance Measurement

Changes to the draft since the previous ballot are indicated by one of four marks
in the right-hand margin. These change marks should aid the balloter in deter-
mining what has changed and therefore what is candidate text for comments and
objections during this ballot. A bar ("|") indicates changes to the line between
drafts 15 and 16. A plus ("+") indicates that text has been added in draft 16. A
minus ("-") indicates that text present in that location in draft 15 has been deleted
in draft 16. A percent ("%") indicates that a change was made at that location in

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

X1

%
%
%
%

%
%

draft 17.

In publishing this standard, both IEEE and the security working group simply
intend to provide a yardstick against which various operating system implemen-
tations can be measured for conformance. It is not the intent of either IEEE or the
security working group to measure or rate any products, to reward or sanction
any vendors of products for conformance or lack of conformance to this standard,
or to attempt to enforce this standard by these or any other means. The responsi-
bility for determining the degree of conformance or lack thereof with this stan-
dard rests solely with the individual who is evaluating the product claiming to be
in conformance with this standard.

Extensions and Supplements to This Standard

Activities to extend this standard to address additional requirements can be anti-
cipated in the future. This is an outline of how these extensions will be incor-
porated, and also how users of this document can keep track of that status.
Extensions are approved as “Supplements” to this document, following the IEEE
Standards Procedures. Approved Supplements are published separately and are
obtained from the IEEE with orders for this document until the full document is
reprinted and such supplements are incorporated in their proper positions.

If you have any questions regarding this or other POSIX documents, you may con-
tact the the IEEE Standards Office by calling IEEE at:

1 (800) 678-IEEE from within the US
1+ (908) 981-1393 from outside the US

to determine which supplements have been published. Published supplements are
available for a modest fee.

Supplements are numbered in the same format as the main document with
unique positions as either subsections or main sections. A supplement may
include new subsections in various sections of the main document as well as new
main sections. Supplements may include new sections in already approved sup-
plements. However, the overall numbering shall be unique so that two supple-
ments only use the same numbers when one replaces the other. Supplements
may contain either required or optional facilities. Supplements may add addi-
tional conformance requirements (see POSIX.1, Implementation Conformance,
1.3) defining new classes of conforming systems or applications.

It is desirable, but perhaps unattainable, that supplements do not change the
functionality of the already defined facilities. Supplements are not used to pro-
vide a general update of the standard. A general update of the standard is done
through the review procedure as specified by the IEEE.

If you have interest in participating in any of the PASC working groups please
send your name, address, and phone number to the Secretary, IEEE Standards
Board, Institute of Electrical and Electronics Engineers, Inc., P.O. Box 1331, 445
Hoes Lane, Piscataway, NJ 08855-1331, and ask to have your request forwarded
to the chairperson of the appropriate TCOS working group. If you have interest

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Xii

in participating in this work at the international level, contact your ISO/IEC
national body.

Please report typographical errors and editorial changes for this draft standard
directly to:

Casey Schaufler

Silicon Graphics

2011 North Shoreline Blvd.

P.O. Box 7311

Mountain View, CA 94039-7311

(415) 933-1634 (voice)

(415) 962-8404 (fax)

casey@sgi.com
SchauflereDOCKMASTER.NCSC.MIL

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

xiii

IEEE Std 1003.1e was prepared by the security Working Group, sponsored by the
Portable Applications Standards Committee of the IEEE Computer Society.

Portable Applications Standards Committee (PASC)

Chair: Lowell Johnson
Treasurer: Barry Needham
Secretary: Charles Severence
Security Working Group Officials
Chair: Lynne Ambuel
Technical Editor: Casey Schaufler

The following people participated in the Security Working Group to develop
the standard.

Lynne Ambuel Jeanne Baccash Lee Badger
Martin Bailey John-Olaf Bauner D. Elliott Bell
Lowell Bogard Kevin Brady Joe Brame
Matthew Brisse Joseph Bulger Lisa Carnahan
Mark Carson Charisse Castagnoli Paul Close
Roland Clouse Peter E. Cordsen Janet Cugini
Anthony D’Alessandro Daniel D. Daugherty = Manilal Daya
Ana Maria De Alvare’ Terence Dowling Jack Dwyer
Maryland R. Edwards Ron Elliott Lloyd English
Jeremy Epstein Frank Fadden Kevin Fall
David Ferbrache Carl Freeman Mark Funkenhauser
Morrie Gasser Gerald B. Green John Griffith
Henry Hall Craig Heath Tom Houghton
Rand Hoven Chris Hughes Howard Israel
Paul A. Karger Joseph Keenan Jerry Keselman
Yvon Klein Andy Kochis Steve Kramer
Steven LaFountain Danielle Lahmani Jason Levitt
Warren E. Loper Jeff Mainville Doug Mansur

Richard E. Mcnaney Chris Milsom Mark Modig

Jim Moseman Kevin V. Murphy Greg Nuss

Rose Odonnell Gary Oing Larry Parker
Gordon Parry Jeff Picciotto Michael Ressler
David Rogers Peter L. Rosencrantz ~ Shawn Rovansek
Craig Rubin Roman Saucedo Stuart Schaeffer
Mark Schaffer Casey Schaufler Michael Schmitz
Larry Scott Eric Shaffer Olin Sibert

Rick Siebenaler Alan Silverstein Jon Spencer
Dennis Steinauer Chris Steinbroner Michael Steuerwalt
Doug Steves Steve Sutton W. Lee Terrell
Charlie Testa Jeff Tofano Brian Weis
Catherine West Ken Witte

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1

18

Information technology—Portable operating
system interface for computer environments

Section 1: Revisions to the General Section

0 1.1 Scope This scope is to be revised and integrated appropriately into the
scope when POSIX. 1e is approved:

This standard, P1003.1e/D17: October 1997 (POSIX.1le), defines five indepen-
dent, optional sets of interfaces that will be used to implement protection,
audit, and control mechanisms. Implementation of any or all of these inter-
faces does not ensure the security of the conforming system nor of conforming
applications. In addition, implementation of these interfaces does not imply
that a conforming system can achieve any class or level of any security evalua-
tion criteria. These interfaces will become integrated into the ISO/IEC 9945-1:
1990 (System Application Program Interface) standard (POSIX.1) as they are
approved and published. The sets of interfaces for implementation are:

(1) Access Control Lists (ACL)

(2) Security Auditing

(3) Capability

(4) Mandatory Access Controls (MAC)
(5) Information Labeling (IL)

19 Each option defines new functions, as well as security-related constraints for the
20 functions and utilities defined by other POSIX standards.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1 Revisions to the General Section 1

%

21

22
23
24
25
26
27
28

29
30
31

32
33

34
35
36

37
38

39
40
41
42
43

0 1.2 Normative References (POSIX.1: line 39)

The following standards contain provisions that, through references in this
text, constitute provisions of this standard. At the time of publication, the edi-
tions indicated were valid. All standards are subject to revision, and parties to
agreements based on this part of this standard are encouraged to investigate
the possibility of applying the most recent editions of the standards listed
below. Members of IEC and ISO maintain registers of currently valid Interna-
tional Standards.

(1) ISO/IEC 9945-1: 1990, Information Technology—Portable Operating Sys-
tem Interface (POSIX)—Part 1: System Application Program Interface
(API) [C Language]

(2) IEEE Standard for Information Technology—Portable Operating System
Interface (POSIX)—Part 2: Shell and Utilities. |

(3) P1003.2¢/D17: October 1997, Draft Standard for Information
Technology—Portable Operating System Interface (POSIX)—Part 2:
Shell and Utilities—Amendment #: Protection and Control Utilities

0 1.3.1.3 Conforming Implementation Options (POSIX.1:line 98) Insert
the following options in alphabetic order:

{_POSIX_ACL} Access control list option (in 2.9.3)
{_POSIX_AUD} Auditing option (in 2.9.3)

{_POSIX_CAP} Capability option (in 2.9.3)
{_POSIX_MAC} Mandatory access control option (in 2.9.3)
{_POSIX_INF} Information label option (in 2.9.3)

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1 Revisions to the General Section

%

1 Section 2: Revisions to Terminology and General Requirements

2 0O 2.2.1 Terminology

3 0O 2.2.2 General Terms (POSIX.1: lines 89-397) Add the following definitions -
4 in alphabetical order:

2.2.2.1 access: A specific type of interaction between a process and an object
that results in the flow of information from one to the other. Possible information
flows include the transfer of attributes pertaining to that object, the transfer of
data pertaining to that object, or the fact of existence of that object.

o 3 O Ot

9 2.2.2.2 access acl: An access control list (ACL) which is used in making discre-
10 tionary access control decisions for an object.

11 2.2.2.3 access control: The prevention of unauthorized access to objects by
12 processes and, conversely, the permitting of authorized access to objects by
13 processes.

14 2.2.2.4 access control list (ACL): A discretionary access control entity associ-
15 ated with an object, consisting of a list of entries where each entry is an identifier
16 (e.g. user or group of users) coupled with a set of access permissions.

17 2.2.2.5 access control policy: A set of rules, part of a security policy, by which
18 a user’s authorization to access an object is determined.

19 2.2.2.6 audit: The procedure of capturing, storing, analyzing, maintaining and
20 managing data concerning security-relevant activities. |

21 2.2.2.7 auditable event: An activity which may cause an audit record to be
22 reported in an audit log.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 3

23
24

25

26
27

28
29

30
31

32
33
34

35
36
37

38
39

40
41

42
43
44

45
46
47
48

49
50

51
52

2.2.2.8 audit event type: A field within an audit record that identifies the
activity reported by the record and defines the required content of the record.

2.2.2.9 audit ID: An identifier for the user accountable for an audit event.

2.2,2,10 audit record: The discrete unit of data reportable in an audit log on
the occurrence of an audit event.

2.2.2.11 audit log: The destination of audit records that are generated and the
source of records read by an audit post-processing application.

2.2.2.12 availability: The property of an object or subject being accessible and
usable upon demand by an authorized user.

2.2.2.13 capability: An attribute of a process that is included in the determina- %

tion of whether or not a process has the appropriate privilege to perform a specific
POSIX.1 action where appropriate privilege is required. -

2.2.2.14 capability flag: A per-capability attribute of a file or process that is
used during exec() processing in computing the capability of the process executing]
that file.

2.2.2.15 capability state: A grouping of all of the flags defined by an implemen-
tation for all capabilities defined for the implementation.

2.2.2.16 channel: An information transfer path within a system or a mechanism
by which the path is effected.

2.2.2.17 confidentiality: The property that the existence of an object and/or its
contents and/or attributes are not made available nor disclosed to unauthorized
processes.

2.2.2.18 covert channel: A communications channel that allows a process to
transfer information in a manner that violates the system’s security policy. Covert
channels are typically realized by the exploitation of mechanisms not intended to
be used for communication.

2.2.2.19 data descriptor: An internal representation which uniquely identifies
a data object.

2.2.2.20 default acl: An ACL which is used in determining the initial discre-
tionary access control information for objects.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

+

53
54

55
56
57
58
59

60
61

62
63

64
65
66

67
68

69
70

71
72

73
74
75

76
77

78
79

80
81
82

83

84
85

2.2.2.21 denial of service: The unauthorized prevention of authorized access to
resources or the delaying of time-critical operations. -

2.2.2.22 discretionary access control (DAC): A means of restricting access to
objects based on the identity of the user, process, and/or groups to which the
objects belong. The controls are discretionary in the sense that a subject with
some access permission is capable of passing that permission (perhaps indirectly)
on to other subjects.

2.2,2.23 dominate: An implementation-defined relation between the values of
MAC labels or information labels.

2.2.2.24 downgrade: An operation which changes a MAC label or information
label to a value that does not dominate the current label. -

2.2.2.25 equivalent: An implementation-defined relation between the values of
MAC labels or of information labels. Two labels are equivalent if each of the labels
dominates the other.

2.2.2.26 extended ACL: An ACL that contains entries in addition to a
minimum ACL.

2.2.2.27 exportable data: Opaque data objects for which the data is self-
contained and persistent. As a result, they can be copied or stored freely.

2.2.2.28 file group class: The property of a file indicating access permissions
for a process related to the process’s group identification.

A process is in the file group class of a file if the process is not in the file owner
class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file.

If { POSIX_ACL} is defined, then a process is also in the file group class if the pro-
cess is not in the file owner class and

(1) the effective user ID of the process matches the qualifier of one of the
ACL_USER entries in the ACL associated with the file, or

(2) the effective group ID or one of the supplementary group IDs of the pro-
cess matches the qualifier of one of the ACL_GROUP entries in the ACL
associated with the file.

Other members of the class may be implementation defined.

2.2.2.29 formal security policy model: A precise statement of a system secu-
rity policy.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 5

86
87
88

89
90
91

92
93
94

95
96
97

98
99
100
101
102

103

104
105

106
107
108

109
110
111
112

113
114
115
116

117
118

2.2.2.30 information label: The representation of a security attribute of a sub-
ject or object that applies to the data contained in that subject or object and is not
used for mandatory access control.

2.2.2.31 information label floating: The operation whereby one information
label is combined with another information label. The specific algorithm used to
define the result of a combination of two labels is implementation defined.

2.2.2.32 information label policy: The policy that determines how information
labels associated with objects and subjects are automatically adjusted as data
flows through the system.

2.2.2.33 MAC label: The representation of a security attribute of a subject or
object which represents the sensitivity of the subject or object and is used for
mandatory access control decisions. -

2.2.2.34 mandatory access control (MAC): A means of restricting and permit-
ting access to objects based on an implementation-defined security policy using
MAC labels and the use of the implementation-defined dominate operator. The
restrictions are mandatory in the sense that they are always imposed by the sys-
tem.

2.2.2.35 minimum ACL: An ACL that contains only the required ACL entries. -

2.2.2.36 object: A passive entity that contains or receives data. Access to an
object potentially implies access to the data that it contains.

2.2.2.37 opaque data object: A data repository whose structure and represen-
tation is unspecified. Access to data contained in these objects is possible through-
the use of defined programming interfaces.

2.2.2.38 persistent: A state in which data retains its original meaning as long
as the system configuration remains unchanged, even across system reboots.
However, any change to the system configuration (such as adding or deleting user
IDs and modifying the set of valid labels) may render such data invalid. -

2.2.2.39 principle of least privilege: A security design principle that states
that a process or program be granted only those privileges (e.g., capabilities)
necessary to accomplish its legitimate function, and only for the time that such
privileges are actually required.

2.2.2.40 query: Any operation which obtains either data or attributes from a
subject or object.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

119
120

121
122
123

124
125

126
127

128
129

130
131
132
133

134
135

136
137

138
139
140

141
142

143
144

145
146

147
148

2.2.2.41 read: A fundamental operation that obtains data from an object or sub-
ject.

2.2.2.42 required ACL entries: The three ACL entries that must exist in every
valid ACL. These entries are exactly one entry each for the owning user, the own-
ing group, and other users not specifically enumerated in the ACL.

2.2.2.43 security: The set of measures defined within a system as necessary to
adequately protect the information to be processed by the system.

2.2.2.44 security administrator: An authority responsible for implementing
the security policy for a security domain.

2.2.2.45 security attribute: An attribute associated with subjects or objects
which is used to determine access rights to an object by a subject.

2.2.2.46 security domain: A set of elements, a security policy, a security
authority and a set of security-relevant activities in which the set of elements are
subject to the security policy, administered by the security authority, for the
specified activities.

2.2.2.47 security policy: The set of laws, rules, and practices that regulate how
an organization manages, protects, and distributes sensitive information.

2.2.2.48 security policy model: A precise presentation of the security policy
enforced by a system. +

2.2.2.49 strictly dominate: A relation between the values of two MAC labels or
information labels whereby one label dominates but is not equivalent to the other
label.

2.2.2.50 subject: An active entity that causes information to flow between
objects or changes the system state; e.g., a process acting on behalf of a user. |

2.2.2,51 tranquillity: Property whereby the MAC label of an object can be
changed only while it is not being accessed. -

2.2.2.52 upgrade: An operation that changes the value of a MAC label or infor-
mation label to a value that strictly dominates its previous value.

2.2.2.53 user: Any person who interacts with a computer system. Operations
are performed on behalf of the user by one or more processes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 7

149 2.2.2.54 write: A fundamental operation that results only in the flow of informa-
150 tion from a subject to an object.

151 0O 2.2.3 Abbreviations (POSIX.1: line 404)

152

153
154
155

156
157
158

159
160
161

162
163
164

165

166
167
168

169
170
171

172
173
174

175
176
177

178
179

180
181
182

For the purpose of this standard, the following abbreviations apply:

(1) POSIX.1: ISO/TIEC 9845-1: 1990: Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Pro-
gram Interface (API) [C Language]

(2) POSIX.2: ISO/IEC 9845-1: 1992: Information IEEE Standard for Infor-|
mation Technology—Portable Operating System Interface (POSIX)—Part
2: Shell and Utilities

(3) POSIX.le: IEEE Std 1003.1e/D17: October 1997, Draft Standard for
Information Technology—Portable Operating System Interface
(POSIX)—Protection, Audit and Control Interfaces

(4) POSIX.2¢: IEEE Std 1003.2¢/D17: October 1997, Draft Standard for
Information Technology—Portable Operating System Interface
(POSIX)—Protection and Control Utilities

0 2.3 General Concepts (POSIX.1: lines 406-498)

0 2.3.2 file access permissions (POSIX.1: line 413) Change this sub-clause to|

"2.3.2 file access controls”, and incorporate the concept of "file access permis-
sions” under it along with the following new concepts:

One standard file access control mechanism based on file permission bits and
two optional file access control mechanisms based on access control lists and
MAC labels are defined by this document.

0 2.3.2.1 file access permissions (POSIX.1: line 414) After the above change

to section 2.3.2, create a new subsection called 2.3.2.1 and replace the previous
text in POSIX. 1 subsection 2.3.2 with the following.

This standard defines discretionary file access control on the basis of file per-

mission bits as described below. The additional provisions of section 2.3.2.2
apply only if { POSIX_ACL} is defined. |

The file permission bits of a file contain read, write, and execute/search per-
missions for the file owner class, file group class, and file other class.

These bits are set at file creation by open(), creat(), mkdir(), and mkfifo().
They are changed by chmod() and, if {_ POSIX_ACL} is defined, acl_set_file()
and acl_set_fd(). These bits are read by stat(), and fstat().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

183
184
185
186
187

188
189
190

191
192

193
194
195

196
197
198

199

200
201

202
203
204
205

206

207
208
209
210
211

212
213
214
215

Implementations may provide additional or alternate file access control
mechanisms, or both. An additional access control mechanism shall only
further restrict the access permissions defined by the file access control
mechanisms described in this section. An alternate access control mechanism
shall:

(1) Specify file permission bits for the file owner class, file group class, and
file other class corresponding to the access permissions, to be returned by
stat () or fstat().

(2) Be enabled only by explicit user action on a per file basis by the file |
owner or a user with the appropriate privilege.

(3) Be disabled for a file after the file permission bits are changed for that
file with chmod (). The disabling of the alternate mechanism need not
disable any additional mechanisms defined by an implementation.

Whenever a process requests file access permission for read, write, or
execute/search, if no additional mechanism denies access, access is determined as
follows:

If the process possesses appropriate privilege:

— If read, write, or directory search permission is requested, access is
granted.

— If execute permission is requested, access is granted if execute per-
mission is granted to at least one user by the file access permission
bits or by an alternate access control mechanism; otherwise, access is
denied.

Otherwise:

— Access is granted if an alternate access control mechanism is not
enabled and the requested access permission bit is set for the class
(file owner class, file group class, or file other class) to which the pro-
cess belongs, or if an alternate access control mechanism is enabled
and it allows the requested access; otherwise, access is denied.

If { POSIX_CAP} is defined, then appropriate privilege includes the following |
capabilities: CAP_DAC_WRITE for write access, CAP_DAC_EXECUTE for exe-
cute access, and CAP_DAC_READ_SEARCH for read and search access. See +
Table 25-5.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 9

216 O 2.3.2.2 access control lists: Add this as a new concept.

217 The {_POSIX_ACL} option provides an additional access control mechanism

218 by providing file access control based upon an access control list mechanism.
219 The provisions of this section apply only if { POSIX ACL} is defined. The |
220 interaction between file permission bits and the ACL mechanism is defined
221 such that a correspondence is maintained between them. The ACL mechanism
222 therefore enhances access control based upon the file permission bits.

223 An ACL entry shall support at a minimum read, write, and execute/search per-
224 missions.

225 An ACL is set at file creation time by open(), creat(), mkdir(), and mkfifo().
226 An additional default ACL can be associated with a directory; the default ACL
227 is used in setting the ACL of any object created in that directory. An ACL is
228 changed by acl_set_fd () and acl_set_file(). A call to acl_set_fd() or acl_set_file()
229 may also result in a change to the file’s permission bits. A call to chmod() to
230 change a file’s permission bits will also result in a change to the corresponding]
231 entries in the ACL. The file’s ACL is read by either acl get fd() or
232 acl_get_file(). A process is granted discretionary access to a file only if all indi-

233 vidual requested modes of access are granted by an ACL entry or the process +
234 possesses appropriate privileges.

235 Whenever a process requests file access permission for read, write, or +
236 execute/search, if no additional mechanism denies access, access is determined+
237 as follows: +
238 If the process possesses appropriate privilege:

239 — If read, write or directory search permission is requested, access
240 is granted.

241 — If execute permission is requested, access is granted if execute
242 permission is specified in at least one ACL entry; otherwise,
243 access is denied.

244 Otherwise:

245 — access is granted if an alternate access control mechanism is not
246 enabled and the requested access permissions are granted on the
247 basis of the evaluation of the ACL (see 23.1.5), or if an alternate
248 access control mechanism is enabled and it allows the requested
249 access; otherwise, access is denied.

250 If { POSIX_CAP} is defined, then appropriate privileges includes the following|
251 capabilities: CAP_DAC_WRITE for write access, CAP_DAC_EXECUTE for
252 execute access, and CAP_DAC_READ_SEARCH for read and search access. |
253 See Table 25-5.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10 2 Revisions to Terminology and General Requirements

254 O 2.3.2.3 mandatory access control: Add this as a new concept.

255 The {_POSIX_MAC]} option provides interfaces to an additional access control
256 mechanism based on the assignment of MAC labels to subjects and objects.
257 The provisions of this section only apply if { POSIX_MAC} is defined. |

258 The MAC mechanism permits or restricts access to an object by a process
259 based on a comparison of the MAC label of the process to the MAC label of the
260 object. A process can read an object only if the process’s MAC label dominates +

261 the object’s MAC label, and write an object only if the process’s MAC label is +
262 dominated by the object’'s MAC label. However, an implementation may

263 impose further restrictions, permitting write access to objects only by
264 processes with a MAC label equivalent to that of the object. The standard does
265 not define the dominance and equivalence relationships and, thus, does not |

266 define a particular MAC policy.

267 MAC read access to an object by a process requires that the process’s MAC
268 label dominate the object’s MAC label or that the process possess appropriate
269 privilege. If { POSIX CAP} is defined, the appropriate privilege is |
270 CAP_MAC_READ. See Table 25-6.

271 MAC write access to an object by a process requires that the process’s MAC
272 label be dominated by the object’s MAC label or that the process possess
273 appropriate privilege. If { POSIX CAP} is defined, the appropriate privilege is|
274 CAP_MAC_WRITE. See Table 25-6.

275 Execute/search file access requires MAC read access to the file.

276 The MAC label of an object (including a process object) is set at creation time
277 to dominate the MAC label of the creating process. Although this allows crea-
278 tion of upgraded objects, this standard provides only interfaces which will
279 create objects with MAC labels equivalent to that of the creating process.
280 However, interfaces are provided to allow an appropriately privileged process
281 to upgrade existing objects.

282 [2.3.2.4 evaluation of file access: Add this as a new concept.

283 Whenever a process requests file access, if an alternate access control mechan-
284 ism is not enabled and all applicable POSIX.1 access control mechanisms |
285 grant the requested access and all additional access control mechanisms grant|
286 the requested access or if an alternate access control mechanism is enabled |
287 and grants the requested access, then access is granted; otherwise, access is
288 denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 11

289
290

291
292
293

294
295

296

12

0 2.3.5 file times update: (POSIX.1: line 475) Add the following paragraph to
the concept definition of file times update:

When {_POSIX_MAC} is defined and the object and process MAC labels are not|

equivalent, then the result of marking the file time attribute st_atime for |
update shall be implementation-defined.

0 2.4 Error Codes Add the following items to the error code definitions in alpha--
betic order.

[ENOTSUP] Operation is not supported. -

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

297 0O 2.7.2 POSIX.1 Symbols (POSIX.1: Table 2-2) Insert the following entries in

298

299
809
302
303
304
305
306
307
308
309
310
311

312
313

314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335

336
337
338
339
340

2 Revisions to Terminology and General Requirements

alphabetical order in Table 2-2:

Reserved Reserved
Header Key Prefix Suffix
<sys/acl.h> 1 acl_
2 ACL_
<sys/audit.h> 1 aud_
2 AUD_
<sys/capability.h> 1 cap_
2 CAP_
<sys/inf.,h> 1 inf
2 INF_
<sys/mac.h> 1 mac_
2 MAC_

0 2.7.3 Headers and Function Prototype (POSIX.1: line 910-927) Add the
following entries in alphabetical order:

<sys/acl.h> acl_add_perm(), acl_calc_mask(), acl_clear _perms(),
acl_copy_entry(), acl_copy ext(), acl_copy_int(),
acl_create_entry(), acl_delete_def _file(), acl_delete_entry(),
acl_delete_perm (), acl_dup (), acl_free(), acl_from_text(),
acl_get_entry(), acl_get_fd (), acl_get_file(), acl_get_permset(),
acl_get_qualifier(), acl_get_tag_type(), acl_init(), acl_set_fd (),
acl_set_file(), acl_set_permset(), acl_set_qualifier(),
acl_set_tag type(), acl_size(), acl_to_text(), acl_valid().

<sys/audit.h> aud_copy_ext(), aud_copy_int(), aud_delete_event(),
aud_delete_event_info(), aud_delete_hdr(), aud_delete_hdr_info(),|
aud_delete_obj(), aud_delete_obj_info(), aud_delete_subj(),
aud_delete_subj info(), aud_dup_record (), aud_evid_from_text(),
aud_evid_to_text(), aud_free(), aud_get all_evid(),
aud_get_event(), aud_get_event_info(), aud_get_hdr(),
aud_get_hdr_info(), aud_get_id (), aud_get_obj(),
aud_get_obj_info(), aud_get_subj(), aud_get_subj_info(),
aud_id_from_text(), aud_id_to_text(), aud_init_record (),
aud_put_event(), aud_put_event_info(), aud_put_hdr(),
aud_put_hdr_info(), aud_put_obj(), aud_put_obj info(),
aud_put_subj(), aud_put_subj_info(), aud_read(),
aud_rec_to_text(), aud_size(), aud_switch (), aud_valid(),

aud_write().

<sys/capability.h> cap_clear(), cap_copy_ext(), cap_copy_int(), cap_dup (),
cap_free(), cap_from_text(), cap_get fd(), cap_get file(),
cap_get_flag(), cap_get proc(), cap_init(), cap_set _fd (),
cap_set_file(), cap_set_flag(), cap_set_proc(), cap_size(),

cap_to_text().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

13

341
342
343
344

345
346
347
348

349
350

852
359
354
355
356
357
358

360
361
362

863
36%
366

14

<sys/inf.h> inf default(), inf dominate(), inf equal(), inf float(), inf free(),
inf_from_text(), inf _get_fd (), inf _get_file(), inf get_proc(),
inf_set_fd(), inf_set_file(), inf_set_proc(), inf_size(), inf_to_text(),
inf_valid ().

<sys/mac.h> mac_dominate(), mac_equal(), mac_free(), mac_from_text(),
mac_get _fd(), mac_get_file(), mac_get_proc(), mac_glb(),
mac_lub(), mac_set_fd(), mac_set_file(), mac_set_proc(),
mac_size(), mac_to_text(), mac_valid ().

0 2.8.2 Minimum Values (POSIX.1: line 983) Insert the following entry in

U

Table 2-3 in alphabetical order:

Name Description Value

{_ POSIX_ACL_ENTRIES_MAX} The maximum number of entries 16
in an ACL for objects that support
ACLs. |
Unspecified
if { POSIX_ACL} is not
defined. |

2.8.4 Run-Time Invariant Values (Possibly Indeterminate)
(POSIX.1: line 1023) Insert the following entry in Table 2-5 in alphabetical
order:

Name Description

{_POSIX_ACL_MAX} The maximum number of entries in an ACL for objects that support ACLs
Unspecified if {_POSIX_ACL} is not defined.-

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

368 [2.8.5 Pathname Variable Values (POSIX.1: line 1044) Insert the following
369 entries in alphabetical order in Table 2-6:

370 Table 2-6 - Pathname Variable Values

873 Name Description Minimum Value
379 {_POSIX_ACL_EXTENDED} A value greater than Zero
374 Zero if POSIX

375 extended Access Con-

376 trol Lists are sup-

377 ported on the object;

378 otherwise zero.

390 { POSIX ACL_PATH MAX} The maximum | 3or 16
381 number of ACL |

382 entries permitted in |

383 the ACLs associated |

384 with the object. If |

385 {_ POSIX ACL_EXTENDED}

386 is greater than zero,

387 then this value shall

388 be 16 or greater. If

389 {_ POSIX_ACL_EXTENDED}

390 is zero, then this value

391 shall be 3.

398 { POSIX _CAP_PRESENT} A value greater than Zero
394 zero if POSIX File

395 Capability extensions

396 are supported on the

397 object; otherwise zero.

308 { POSIX_INF_PRESENT} A value greater than Zero
400 zero if POSIX Infor-

401 mation Label func-

402 tions that set the

403 Information Label are

404 supported on the

405 object; otherwise zero.

407 { POSIX_ MAC_PRESENT} A value greater than Zero
408 zero if POSIX Manda-

409 tory Access Control

410 functions that set the

411 MAC label are sup-

412 ported on the object;

413 otherwise zero.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 15

415 [0 2.9.3 Compile-Time Symbolic Constants for Portability Specifications |
416 (POSIX.1: line 1122) Insert the following entries in Table 2-10 in alphabeticall
417 order:

418 Table 2-10 - Compile-Time Symbolic Constants

438 Name Description

425 { POSIX_ACL} If this symbol is defined, it
422 indicates that the implemen-
423 tation supports Access Con-
424 trol List extensions.

436 { POSIX_AUD} If this symbol is defined, it
427 indicates that the implemen-
428 tation supports Auditing
429 extensions.

435 { POSIX_CAP} If this symbol is defined, it
432 indicates that the implemen-
433 tation supports Capability
434 extensions.

4306 { POSIX_INF} If this symbol is defined, it
437 indicates that the implemen-
438 tation supports Information
439 Label extensions.

445 { POSIX MAC} If this symbol is defined, it
442 indicates that the implemen-
443 tation supports Mandatory
444 Access Control extensions.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

16 2 Revisions to Terminology and General Requirements

1 Section 3: Revisions to Process Primitives

0 3.1.1.2 Process Creation — Description (POSIX.1: line 36) Insert the fol-
lowing lines after line 32 in Section 3.1.1.2: |

w N

4 (1) If { POSIX_ACL} is defined, the child process shall have its own copy of |
5 any ACL pointers and ACL entry descriptors in the parent, and any ACL

6 working storage to which they refer. |
7
8

(2) If {_POSIX_AUD} is defined, the child process shall have its own copy of |
any audit record descriptors in the parent, and any audit working

9 storage to which they refer. The audit state of the child, as set by
10 aud_switch (), shall initially be the same as that of the parent; subse-
11 quent calls to aud_switch() in either process shall not affect the audit
12 state of the other process. |

13 0O 3.1.2.2 Execute a File — Description (POSIX.1: line 153) Insert the follow-
14 ing at the end of the list of attributes inherited by the new process image on
15 exec() following line 153 in Section 3.1.2.2:

16 (15) If { POSIX_MAC} is defined, the process MAC label (see 26.1.1) %

17 0O 3.1.2.2 Execute a File — Description (POSIX.1: line 168) Insert the follow-|
18 ing paragraphs after line 168 in section 3.1.2.2:

19 If { POSIX_ACL} is defined, the new process image created shall not inherit
20 any ACL pointers or ACL entry descriptions or any ACL working storage from
21 the previous process image.

22 If { POSIX_AUD} is defined, the new process image shall not inherit any audit]

23 record descriptors or audit record working storage from the previous process
24 image. Any incomplete audit records are discarded. The audit state of the
25 process, as set by aud_switch() shall be the same as in the previous process
26 image.

27 If {_ POSIX_CAP} is defined, the new process image shall not inherit any capa-|
28 bility data objects nor any working storage associated with capabilities in the
29 previous process image.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 Revisions to Process Primitives 17

30
31
32
33
34
35

36
37
38

39

40
41
42
43
44
45

46
47

48
49

50
51
52
53

54
55

56
57

58
59

18

If { POSIX_CAP} is defined, the exec() functions shall modify the state of each |
of the capabilities of the process as follows, where I;, E;, and P, are respec- |
tively the inheritable, effective, and permitted flags of the new process image; |
I, is the inheritable flags of the current process image; and I, E; and P; are |
respectively the inheritable, effective, and permitted flags associated with the
file being executed:

I =1,
P, =(P;&& X) || (I && 1)) |
E; = E;&& P, |

where X denotes possible additional implementation-defined restrictions. +

If { POSIX_INF} is defined and { POSIX INF_PRESENT} is in effect for the |
file being executed, the information label of the process shall automatically be
set to the same value as returned by inf float(file information label, process
information label). If { POSIX_INF} is defined but {_ POSIX_INF_PRESENT} |
is not in effect for the file being executed, the information label of the process
shall be set in an implementation defined manner.

3.3.1.3 Signal Actions — Description (POSIX.1: line 556) Insert the fol- |
lowing section before line 556:

If { POSIX_INF} is defined, the following functions shall also be %
reentrant with respect to signals:

inf_dominate() inf_equal() inf _set_fd() inf _set_file()
inf set_proc() inf size()

If { POSIX_MAC} is defined, the following functions shall also |
be reentrant with respect to signals:

mac_dominate() mac_equal() mac_set_fd() mac_set_file()
mac_set_proc() mac_size()

3.3.2.2 Send a Signal to a Process — Description (POSIX.1:line 594)
Insert the following sentence after the word "privileges”:

If {_POSIX_CAP} is defined, then appropriate privilege shall include |
CAP_KILL.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 Revisions to Process Primitives

60
61

62
63
64
65

66
67

68
69
70
71

72
73
74
75
76

77
78
79
80

81
82

83
84

85
86
87

88
89

90
91
92

0 3.3.2.2 Send a Signal to a Process — Description (POSIX.1:line 616)
Insert the following after line 616:

If {_ POSIX_MAC} is defined, then in addition to the restrictions defined above,|
the following restrictions apply depending on the MAC labels of the sending
and receiving process. There are four cases to be considered for each potential
receiving process specified by pid:

(1) If the MAC label of the sending process is equivalent to the MAC label of
the receiving process, then no additional restrictions are imposed.

(2) If the MAC label of the sending process dominates the MAC label of the
receiver (i.e., the signal is being written down), then the sending process
must have appropriate privilege. If { POSIX CAP} is defined, then |
appropriate privilege shall include CAP_MAC_WRITE.

(3) If the MAC label of the receiving process dominates the MAC label of the
sending process (i.e., the signal is being written up), then it is implemen-
tation defined whether the sending process requires appropriate
privilege. If { POSIX_CAP} is defined and appropriate privilege is |
required, then appropriate privilege shall include CAP_MAC_READ.

(4) If neither of the MAC labels of the sender and receiver dominates the %
other, then the sending process must have appropriate privilege. If
{_ POSIX _CAP} is defined, appropriate privilege shall include |
CAP_MAC_WRITE.

0 3.3.2.4 Send a Signal to a Process — Errors (POSIX.1: line 625-628)
Replace lines 625-628 with the following:

[EPERM] The process does not have permission to send the signal to
any receiving process.

If { POSIX_MAC} is defined, the process has appropriate |
MAC access to a receiving process, but other access checks
have denied the request.

[ESRCH] No process or process group can be found corresponding to
that specified by pid.

If { POSIX_MAC} is defined, a receiving process or processes |
may actually exist, but the sending process does not have
appropriate MAC access to any of the receiving processes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 Revisions to Process Primitives 19

o)) QU > w N

© oo

10
11

12
13

14
15

16
17

Section 4: Revisions to Process Environment

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 48) Insert
the following after line 48 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETUID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 52) Insert
the following after line 52 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETUID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 54) Insert
the following after line 54 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETGID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 58) Insert
the following after line 58 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETGID capability.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 Revisions to Process Environment 21

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

86
38

40
41
42
43

22

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 61) Insert
the following after line 61 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETUID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 64) Insert
the following after line 64 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETUID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 66) Insert
the following after line 66 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETGID capability.

4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 69) Insert
the following after line 69 of Section 4.2.2.2:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_SETGID capability.

4.8.1.2 Get Configurable System Variables — Description (POSIX.1: line
407) Insert the following entries in Table 4-2:

Variable name Value
{_POSIX ACL_MAX} { SC_ACL_MAX}
{_POSIX_ACL} { SC_ACCESS CONTROL_LIST}
{_POSIX_AUD} {_ SC_AUDIT}
{_POSIX_CAP} {_SC_CAPABILITIES}
S
S

{_POSIX_INF} C_INFORMATION_LABEL}
{_POSIX_MAC} C_MANDATORY_ACCESS_CONTROL}

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 Revisions to Process Environment

1 Section 5: Revisions to Files and Directories

2 0 5.3.1.2 Open a File — Description (POSIX.1: lines 192-194) Replace the
3 sentence beginning “The file permission bits ...”, with the following:

4 If { POSIX_ACL} is defined and {_POSIX _ACL_EXTENDED} is in effect for |
5 the directory in which the file is being created (the "containing directory") and -
6 said directory has a default ACL, the following actions shall be performed:
7
8

(1) The default ACL of the containing directory is copied to the access
ACL of the new file.

9 (2) Both the ACL_USER_OBJ ACL entry permission bits and the file
10 owner class permission bits of the access ACL are set to the intersec- +
11 tion of the default ACL’s ACL_USER_OBJ permission bits and the file
12 owner class permission bits in mode. The action taken for any
13 implementation-defined permissions that may be in the
14 ACL_USER_OBJ entry shall be implementation-defined.

15 (3) If the default ACL does not contain an ACL_MASK entry, both the
16 ACL_GROUP_OBJ ACL entry permission bits and the file group class

17 permission bits of the access ACL are set to the intersection of the +
18 default ACL’s ACL_GROUP_OBJ permission bits and the file group
19 class permission bits in mode. The action taken for any
20 implementation-defined permissions that may be in the
21 ACL_GROUP_OBJ entry shall be implementation-defined.

22 (4) If the default ACL contains an ACL_MASK entry, both the
23 ACL_MASK ACL entry permission bits and the file group class per-
24 mission bits of the access ACL are set to the intersection of the default+
25 ACL’s ACL._MASK permission bits and the file group class permission

26 bits in mode. The action taken for any implementation-defined per-
27 missions that may be in the ACL_MASK entry shall be
28 implementation-defined.

29 (5) Both the ACL_OTHER ACL entry permission bits and the file other
30 class permission bits of the access ACL are set to the intersection of +
31 the default ACL’s ACL_OTHER permission bits and the file other
32 class permission bits in mode. The action taken for any
33 implementation-defined permissions that may be in the ACL_OTHER

34 entry shall be implementation-defined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 23

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

50
51

52
53
54
55
56
57

58
59

60
61
62

63
64

65
66
67
68

24

Implementation-defined default ACL entries may affect the above algorithm
but shall not alter the access permitted to any subject that does not match
those implementation-defined ACL entries. Implementations may provide an
additional default ACL mechanism that is applied if a default ACL as defined
by this standard is not present. Such an implementation-defined default ACL |
interface may apply different access and/or default ACLs to created objects
based upon implementation-defined criteria.

If { POSIX_ACL} is not defined, or { POSIX_ACL_EXTENDEDY} is not in effect]
for the directory in which the file is being created (the "containing directory"), |
or said directory does not have a default ACL, the file permission bits (see
5.6.1) shall be set to the value of mode except those set in the file mode crea-
tion mask of the process (see 5.3.3). In any of these cases (default ACL,
implementation-defined default ACL, or file permission bits), access control
decisions shall not be made on the newly created file until all access control
information has been associated with the file.

0 5.3.1.2 Open a File — Description (POSIX.1: line 197) Insert the following

lines after line 197 in Section 5.3.1.2:

If {_ POSIX_MAC} is defined and {_ POSIX_MAC_PRESENT} is in effect for the|
containing directory and the file is created, the MAC label of the newly created
file shall be equivalent to the MAC label of the calling process. If
{_POSIX_INF?} is defined and the file is created, the information label of the

file shall automatically be set to a value which dominates the value returned
by inf _default().

0 5.3.1.2 Open a File — Description (POSIX.1: line 234) Insert the following

sentences after line 234 in Section 5.3.1.2:

If {_ POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the
file path, then the information label of the file shall automatically be set to a
value which dominates the value returned by inf default().

0 5.3.1.2 Open a File — Description (POSIX.1: line 240) Insert the following

paragraph after line 240 in Section 5.3.1.2:

If { POSIX_MAC} is defined and if the file exists and it is a FIFO special file,
then the calling process shall have MAC write access to the file. If the file
exists and is a FIFO special file, and the value of oflag includes O_RDONLY or
O_RDWR then the calling process shall also have MAC read access to the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories

69 0O 5.3.4.2 Link a File — Description (POSIX.1: line 331) Insert the following
70 sentence:

71 If { POSIX_CAP} is defined, then appropriate privilege shall include the |
72 CAP_LINK_DIR capability.

73 0 5.3.4.2 Link a File — Description (POSIX.1: line 336) Insert the following
74 paragraph after line 336 in Section 5.3.4.2:

75 If { POSIX_MAC} is defined, the calling process shall have MAC write access |
76 to existing, MAC read access to the path to existing and new, and MAC read
77 access to new.

78 If { POSIX_MAC} is defined the calling process shall also have MAC write |

79 access to the directory in which the new entry is to be created.
80 If { POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the |
81 existing argument, the information label of existing remains unchanged.

82 [5.3.4.4 Link a File — Errors (POSIX.1: line 347) Insert the following after
83 the line:

84 or {_ POSIX_MAC} is defined and MAC write access was denied to existing or to|
85 the directory in which new is to be created or MAC read access was denied to
86 the path to existing or to new.

87 [0 5.4.1.2 Make a Directory — Description (POSIX.1: lines 378-380) Replace
88 the second and third sentences of the paragraph with the following:

89 If { POSIX ACL} is defined and { POSIX ACL_EXTENDED} is in effect for |
90 the directory in which the new directory is being created (the "containing
91 directory") and said directory has a default ACL, the following actions shall be -
92 performed:

93 (1) The default ACL of the containing directory is copied to both the
94 access ACL and the default ACL of the new directory.

95 (2) Both the ACL_USER_OBJ ACL entry permission bits and the file
96 owner class permission bits of the access ACL are set to the intersec- +
97 tion of the default ACL’s ACL_USER_OBJ permission bits and the file
98 owner class permission bits in mode. The action taken for any
99 implementation-defined permissions that may be in the
100 ACL_USER_OBJ entry shall be implementation-defined.

101 (3) If the default ACL does not contain an ACL._MASK entry, both the
102 ACL_GROUP_OBJ ACL entry permission bits and the file group class
103 permission bits of the access ACL are set to the intersection of the +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 25

104
105
106
107

108
109
110
111
112
113
114

115
116
117
118
119
120

121
122
123
124
125
126
127

128
129
130
131
132
133
134
135

136
137

138
139
140

141
142

26

default ACL’s ACL_GROUP_OBJ permission bits and the file group
class permission bits in mode. The action taken for any
implementation-defined permissions that may be in the
ACL_GROUP_OBJ entry shall be implementation-defined.

(4) If the default ACL contains an ACL_MASK entry, both the
ACL_MASK ACL entry permission bits and the file group class per-
mission bits of the access ACL are set to the intersection of the default+
ACL’s ACL_MASK permission bits and the file group class permission
bits in mode. The action taken for any implementation-defined per-
missions that may be in the ACL_MASK entry shall be
implementation-defined.

(5) Both the ACL_OTHER ACL entry permission bits and the file other
class permission bits of the access ACL are set to the intersection of +
the default ACL’s ACL_OTHER permission bits and the file other
class permission bits in mode. The action taken for any
implementation-defined permissions that may be in the ACL_OTHER
entry shall be implementation-defined.

Implementation-defined default ACL entries may affect the above algorithm
but shall not alter the access permitted to any subject that does not match
those implementation-defined ACL entries. Implementations may provide an
additional default ACL mechanism that is applied if a default ACL as defined
by this standard is not present. Such an implementation-defined default ACL |
interface may apply different access and/or default ACLs to created objects
based upon implementation-defined criteria.

If { POSIX_ACL} is not defined or { POSIX_ACL_EXTENDED} is not in effect |
for the directory in which the file is being created (the "containing directory"), |
or said directory does not have a default ACL, the file permission bits of the
new directory shall be set to the value of mode except those set in the file mode
creation mask of the process (see 5.3.3). In any of these cases (default ACL,
implementation-defined default ACL, or file permission bits), access control
decisions shall not be made on the newly created directory until all access con-
trol information has been associated with the directory.

0 5.4.1.2 Make a Directory — Description (POSIX.1: line 385) Insert the fol-
lowing paragraphs after line 385 in Section 5.4.1.2:

If {_ POSIX_MAC} is defined and { POSIX_MAC_PRESENT} is in effect for the|
containing directory and the directory is created, the MAC label of the newly
created directory shall be equivalent to the MAC label of the calling process.

If { POSIX_MAC} is defined, the calling process shall require MAC write |
access to the containing directory.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories

143 0 5.4.2.2 Make a FIFO Special File — Description (POSIX.1: lines 426-428)
Replace the second and third sentences in the paragraph with the following:

144

145
146
147

148
149

150
151
152
153
154
155

156
157
158
159
160
161
162

163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180
181
182

183
184
185
186

If { POSIX_ACL} is defined and {_POSIX ACL_EXTENDED} is in effect for |

the directory in which the FIFO is being created (the "containing directory")

and said directory has a default ACL, the following actions shall be performed:

(D

(2)

(3)

4)

(5)

The default ACL of the containing directory is copied to the access
ACL of the new FIFO.

Both the ACL_USER_OBJ ACL entry permission bits and the file
owner class permission bits of the access ACL are set to the inter-+
section of the default ACL’s ACL_USER_OBJ permission bits and
the file owner class permission bits in mode. The action taken for

any implementation-defined permissions that may be in the
ACL_USER_OBJ entry shall be implementation-defined.

If the default ACL does not contain an ACL_MASK entry, both
the ACL_GROUP_OBJ ACL entry permission bits and the file
group class permission bits of the access ACL are set to the inter-+
section of the default ACL’s ACL_GROUP_OBJ permission bits
and the file group class permission bits in mode. The action
taken for any implementation-defined permissions that may be in
the ACL_GROUP_OBJ entry shall be implementation-defined.

If the default ACL contains an ACL_MASK entry, both the
ACL_MASK ACL entry permission bits and the file group class
permission bits of the access ACL are set to the intersection of the+
default ACL’s ACL_MASK permission bits and the file group
class permission bits in mode. The action taken for any

implementation-defined permissions that may be in the
ACL_MASK entry shall be implementation-defined.

Both the ACL_OTHER ACL entry permission bits and the file
other class permission bits of the access ACL are set to the inter- +
section of the default ACL’s ACL_OTHER permission bits and the
file other class permission bits in mode. The action taken for any

implementation-defined permissions that may be in the
ACL_OTHER entry shall be implementation-defined.

Implementation-defined default ACL entries may affect the above algorithm
but shall not alter the access permitted to any subject that does not match
those implementation-defined ACL entries. Implementations may provide an
additional default ACL mechanism that is applied if a default ACL as defined
by this standard is not present. Such an implementation-defined default ACL |
interface may apply different access and/or default ACLs to created objects
based upon implementation-defined criteria.

If { POSIX_ACL} is not defined or { POSIX_ACL_EXTENDED} is not in effect |

for the directory in which the file is being created (the "containing directory"), |
or said directory does not have a default ACL, the file permission bits of the |
new FIFO are initialized from mode. The file permission bits of the mode |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

5 Revisions to Files and Directories 27

187

188
189

190
191
192
193
194

195
196
197
198

199
200

201
202

203
204

205
206

207
208

209
210

211
212
213
214

28

argument are modified by the file creation mask of the process (see 5.3.3).

5.4.2.2 Make a FIFO Special File — Description (POSIX.1: lines 432)
Insert the following paragraphs after line 432 in Section 5.4.2.2:

If { POSIX_MAC} is defined and {_ POSIX_MAC_PRESENTS} is in effect for the|
containing directory and the special file is created, the MAC label of the newly
created special file shall be equivalent to the MAC label of the calling process
and the calling process shall have MAC write access to the parent directory of
the file to be created.

If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the
file path, and the special file is created, then the information label of the spe-
cial file shall automatically be set to a value which dominates the value
returned by inf default().

5.5.1.2 Remove Directory Entries — Description (POSIX.1:line 474)
Insert the following paragraphs:

If {_ POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_ADMIN capability.

If { POSIX_MAC} is defined the calling process shall have MAC write access to|
the directory containing the link to be removed.

5.5.1.4 Remove Directory Entries — Errors (POSIX.1: line 487) Insert
the following phrase at the end of the line:

or {_POSIX_MAC} is defined and MAC write access to the directory containing|
the link to be removed was denied.

0 5.5.2.2 Remove a Directory — Description (POSIX.1: line 520) Insert the

following paragraph after line 520:

If { POSIX_MAC} is defined, the calling process shall have MAC write access
to the parent directory of the directory being removed. If {_POSIX_MAC} is
defined, the calling process shall have MAC read access to the parent directory
of the directory being removed.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories

%

215
216

217
218
219

220
221

222
223
224
225

226
227

228
229
230
231
232
233
234

235
236

237
238
239

240
241

242

0 5.5.2.4 Remove a Directory — Errors (POSIX.1: line 532) Insert the fol-

lowing phrase at the end of the line:

or {_POSIX_MAC} is defined and MAC write access was denied to the parent
directory of the directory being removed or MAC read access was denied to the
directory containing path.

0 5.5.3.2 Rename a File — Description (POSIX.1: line 583) Insert the follow-

ing paragraph after line 566:

If { POSIX_MAC} is defined the calling process must have MAC write access to|
the directory containing old and to the directory that will contain new. If
{_POSIX_MAC} is defined, and the link named by the new argument exists,
the calling process shall have MAC write access to new.

5.6.2.2 Get File Status — Description (POSIX.1: line 726) Insert the fol-
lowing sentence:

If { POSIX_ACL} is defined, and {_ POSIX_ACL_EXTENDED} is in effect for
the pathname, and the access ACL contains an ACL_MASK entry, then the file|
group class permission bits represent the ACL_MASK access ACL entry file
permission bits. If { POSIX_ACL} is defined, and {_ POSIX_ACL_EXTENDED}|
is in effect for the pathname, and the access ACL does not contain an
ACL_MASK entry, then the file group class permission bits represent the
ACL_GROUP_OBJ access ACL entry file permission bits.

5.6.2.2 Get File Status — Description (POSIX.1: line 727) Insert the fol-
lowing:

If { POSIX_MAC} is defined stat() shall require the calling process have MAC |
read access to the file. If { POSIX_MAC} is defined fstat() shall require the
calling process have the file open for read or have MAC read access to the file.

5.6.2.4 Get File Status — Errors (POSIX.1: line 738) Insert the following
phrase at the end of this line:

or { POSIX MAC} is defined and MAC read access is denied to the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 29

243 [5.6.4.2 Change File Modes — Description (POSIX.1: line 802) Insert the
244 following sentence in line 802 of Section 5.6.4.2:

245 If { POSIX CAP} is defined, then appropriate privilege shall include the |
246 CAP_FOWNER capability.

247 [0 5.6.4.2 Change File Modes — Description (POSIX.1: line 804) Insert the
248 following sentence in line 804:

249 If the process does not have appropriate privilege, then the S_ISUID bit in the
250 mode is ignored. If { POSIX_CAP} is defined, then appropriate privilege shall |
251 include the CAP_FSETID capability.

252 [0 5.6.4.2 Change File Modes — Description (POSIX.1: line 805) Insert the
253 following paragraph after this line:

254 If { POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in effect for -
255 the pathname, then the following actions shall be performed.

256 (1) The ACL_USER_OBJ access ACL entry permission bits shall be set equal+
257 to the file owner class permission bits.

258 (2) If an ACL_MASK entry is not present in the access ACL, then the +
259 ACL_GROUP_OBJ access ACL entry permission bits shall be set equal to+
260 the file group class permission bits. Otherwise, the ACL_MASK access +
261 ACL entry permission bits shall be set equal to the file group class per-
262 mission bits, and the ACL_GROUP_OBJ access ACL entry permission +
263 bits shall remain unchanged.

264 (3) The ACL_OTHER access ACL entry permission bits shall be set equal to +
265 the file other class permission bits.

266 [5.6.4.2 Change File Modes — Description (POSIX.1: line 809) Insert the
267 following sentence after this line:

268 If { POSIX CAP} is defined, then appropriate privilege shall include the |
269 CAP_FSETID capability.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

30 5 Revisions to Files and Directories

270
271

272
273
274
275
276
277
278
279
280
281
282

283
284

285
286

287
288
289
290

201
292

5.6.4.2 Change File Modes — Description (POSIX.1: line 811) Insert the
following sentence after line 811 of Section 5.6.4.2:

If {_ POSIX_MAC} is defined, the calling process shall have MAC write access
to the file.

5.6.4.2 Change File Modes — Errors (POSIX.1: line 821) Insert the follow-
ing phrase at the end of this line:

or {_ POSIX_MAC} is defined and MAC write access to the target file is denied. |

5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
844) Insert the following sentence in this line:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_FOWNER capability.

5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
847) Insert the following sentence after this line:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_CHOWN capability.

5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
856) Insert the following sentence after the word "altered”:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_FSETID capability.

5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
858) Insert the following paragraph after line 858:

If { POSIX_MAC} is defined, the calling process shall have MAC write access
to the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 31

293
294

295
296
297
298
299
300

301
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316

317

32

0 5.6.5.4 Change Owner and Group of a File — Errors (POSIX.1: line 868)

Insert the following phrase at the end of this line:

or {_POSIX_MAC} is defined and MAC write access to the target file is denied. |

0 5.6.5.4 Change Owner and Group of a File — Errors (POSIX.1: line 879) |

Insert the following sentences after this line: |

If { POSIX_CAP} is defined and {_POSIX CHOWN_RESTRICTED} is defined, |
and the effective user ID matches the owner of the file, then appropriate
privilege shall include the CAP_CHOWN capability. If {_POSIX_CAP} is
defined, and the effective user ID does not match the owner of the file, then
appropriate privilege shall include the CAP_FOWNER capability.

5.6.6.2 Set File Access and Modification Times — Description
(POSIX.1: line 899) Insert the following sentence after this line:

If { POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_FOWNER capability.

5.6.6.2 Set File Access and Modification Times — Description
(POSIX.1: line 899) Insert the following paragraph after this:

If { POSIX_MAC} is defined, then the process shall have MAC write access to
the file.

5.6.6.2 Set File Access and Modification Times — Description
(POSIX.1: line 903) Insert the following sentence after this line:

If {_ POSIX_CAP} is defined, then appropriate privilege shall include the
CAP_FOWNER capability.

5.6.6.4 Set File Access and Modification Times — Errors (POSIX.1: line
927) Insert the following phrase at the end of this line:

or {_ POSIX_MAC} is defined and MAC write access to the target file is denied. |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories

318 0O 5.7.1.3 Get Configurable Pathname Variables — Returns (POSIX.1: line
319 965) Add the following variables to Table 5-2:

820 Variable name Value Notes
322 {_POSIX_ACL_EXTENDED} { PC_ACL_EXTENDED} @)
323 {_POSIX_ACL_PATH_MAX} { PC_ACL_MAX} @)
324 { POSIX CAP PRESENT} { PC_CAP_PRESENT} @)
325 { POSIX MAC PRESENT} { PC_MAC_PRESENT} @)
326 { POSIX INF PRESENT} {_ PC_INF_PRESENT} @)

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 33

1 Section 6: Revisions to Input and Output Primitives

0 6.1.1.2 Create an Inter-Process Channel — Description (POSIX.1: line
21) Insert the following paragraphs after this line:

W N

If {_ POSIX_MAC} is defined, then the MAC label of a pipe shall be equivalent
to the MAC label of the process that created it. The MAC label is present for
return by mac_get fd(). This standard does not define that any access control |
decisions are made using the label.

If { POSIX_INF} is defined, the information label of the pipe shall automati-
cally be set to a value which dominates the value returned by inf default().

© 00 =30 O

10 O 6.4.1.2 Read from a File — Description (POSIX.1: line 158) Insert the fol-
11 lowing paragraph after this line:

12 If { POSIX_INF} is defined and { POSIX_INF PRESENT} is in effect for the

13 file being read, then the information label of the process shall automatically be
14 set to an implementation-defined value that shall be the same as the value of
15 inf float(file information label, process information label).

16 0O 6.4.2.2 Write to a File — Description (POSIX.1: line 261) Insert the follow-
17 ing paragraph after this line:

18 If { POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the
19 file being written, then the information label of the file shall automatically be
20 set to an implementation-defined value which shall be the same as the value of
21 inf_float(process information label, file information label).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6 Revisions to Input and Output Primitives 35

1 Section 8: Revisions to C Programming Language Specific Services

2 [0 8.2.3 Interactions of Other File Type C Functions (POSIX.1: line 345)
3 Insert the following sentence after line 345:

4 In particular, if an optional portion of this standard is present, the traits
5 specific to the option in the underlying function must be shared by the stream
6 function.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 Revisions to C Programming Language Specific Services 37

1 Section 23: Access Control Lists

2 23.1 General Overview
3 The POSIX.1le ACL facility defines an interface for manipulating Access Control
4 Lists. This interface is an extension of the POSIX.1 file permission bits. Support
5 for the interfaces defined in this section is optional but shall be provided if the
6 symbol { POSIX_ACL} is defined. |
7 The POSIX.1e ACL interface does not alter the syntax of existing POSIX.1 inter-
8 faces. However, the access control semantics associated with existing POSIX.1
9 interfaces are necessarily more complex as a result of ACLs. The POSIX.1le ACL
10 facility includes:
11 (1) Definition and use of access and default ACLs
12 (2) Definition of initial access permissions on object creation
13 (3) Specification of the access check algorithm
14 (4) Functions to manipulate ACLs.
15 Every object can be thought of as having associated with it an ACL that governs
16 the discretionary access to that object; this ACL is referred to as an access ACL.
17 In addition, a directory may have an associated ACL that governs the initial
18 access ACL for objects created within that directory; this ACL is referred to as a +
19 default ACL. Files, as defined by POSIX.1, are the only objects for which the
20 POSIX.1le ACL facility defines ACLs. For the purposes of this document, the
21 POSIX.1 file permission bits will be considered as a special case of an ACL. An
22 ACL consists of a set of ACL entries. An ACL entry specifies the access permis-
23 sions on the associated object for an individual user or a group of users. The
24 POSIX.1le ACL facility does not dictate the actual implementation of ACLs or the
25 existing POSIX.1 file permission bits. The POSIX.1e ACL facility does not dictate
26 the specific internal representation of an ACL nor any ordering of entries within
27 an ACL. In particular, the order of internal storage of entries within an ACL does
28 not affect the order of evaluation.
29 In order to read an ACL from an object, a process must have read access to the
30 object’s attributes. In order to write (update) an ACL to an object, the process
31 must have write access to the object’s attributes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 39

32

33
34
35

36
37

38
39

40

41
42
43

44
45
46

47
48
49

50
51
52

53
54
55

56
57
58

59

60
61
62
63

64
65
66
67
68

69
70
71

40

23.1.1 ACL Entry Composition

An ACL entry contains, at a minimum, three distinct pieces of information:
(1) tag type: specifies the type of ACL entry
(2) qualifier: specifies an instance of an ACL entry tag type

(3) permissions set: specifies the discretionary access rights for processes
identified by the tag type and qualifier

A conforming implementation may add implementation-defined pieces of informa-
tion to an ACL entry.

A conforming ACL implementation shall define the following tag types:

— ACL_GROUP: an ACL entry of tag type ACL_GROUP denotes discretion-
ary access rights for processes whose effective group ID or any supplemen-
tal group IDs match the ACL entry qualifier

— ACL_GROUP_OBJ: an ACL entry of tag type ACL_GROUP_OBJ denotes
discretionary access rights for processes whose effective group ID or any
supplemental group IDs match the group ID of the group of the file.

— ACL_MASK: an ACL entry of tag type ACL_MASK denotes the maximum
discretionary access rights that can be granted to a process in the file group|
class.

— ACL_OTHER: an ACL entry of tag type ACLL_OTHER denotes discretionary
access rights for processes whose attributes do not match any other entry in|
the ACL

— ACL_USER: an ACL entry of tag type ACL_USER denotes discretionary
access rights for processes whose effective user ID matches the ACL entry
qualifier

— ACL_USER_OBJ: an ACL entry of tag type ACL_USER_OBJ denotes dis-
cretionary access rights for processes whose effective user ID matches the
user ID of the owner of the file.

A conforming implementation may define additional tag types.

This standard extends the file group class, as defined in POSIX.1, to include
processes which are not in the file owner class and which match ACL entries with
the tag types ACL_GROUP, ACL_GROUP_OBJ, ACL_USER, or any
implementation-defined tag types that are not in the file owner class.

An ACL shall contain exactly one entry for each of ACL_USER_OBJ,
ACL_GROUP_OBJ, and ACL_OTHER tag types. ACL entries with ACL,_GROUP
and ACL_USER tag types shall appear zero or more times in an ACL. A conform-|
ing implementation shall support the maximum number of entries in an ACL, as
defined by the value of { POSIX_ACL_PATH_MAX]}, on a non-empty set of objects.|

The three ACL entries of tag type ACL_USER_OBJ, ACL_GROUP_OBJ, and
ACL_OTHER are referred to as the required ACL entries. An ACL that contains
only the required ACL entries is called a minimum ACL. An ACL which is not a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

72 minimum ACL is called an extended ACL.

73 An ACL that contains ACL_GROUP, ACL_USER, or implementation-defined ACL
74 entries in the file group class shall contain exactly one ACL_MASK entry. If an
75 ACL does not contain ACL._GROUP, ACL_USER, or implementation-defined ACL
76 entries in the file group class, then the ACL_MASK entry shall be optional.

77 The qualifier field associated with the POSIX.1e ACL facility defined tag types
78 shall not be extended to contain any implementation-defined information. The
79 qualifier field associated with implementation-defined tag types may contain fully
80 implementation-defined information. The qualifier field shall be unique among
81 all entries of the same POSIX.1le ACL facility defined tag type in a given ACL.
82 For entries of the ACL_USER and ACL_GROUP tag type, the qualifier field shall
83 be present and contain either a user ID or a group ID respectively. The value of
84 the qualifier field in entries of tag types ACL_GROUP_OBJ, ACL_MASK,
85 ACL_OTHER, and ACL_USER_OBJ shall be unspecified. |

86 The set of discretionary access permissions shall, at a minimum, include: read,
87 write, and execute/search. Additional permissions may be added and shall be +
88 implementation-defined.

89 23.1.2 Relationship with File Permission Bits

90 ACL interfaces extend the file permission bit interfaces to provide a finer granu- |
91 larity of access control than is possible with permission bits alone. As a superset
92 of the file permission bit interface, the ACL functionality specified preserves com- |
93 patibility with applications using POSIX.1 interfaces to retrieve and manipulate
94 access permission bits, e.g., chmod(), creat(), and stat().

95 The file permission bits shall correspond to three entries in an ACL. The permis- |

96 sions specified by the file owner class permission bits correspond to the permis-

97 sions associated with the ACL_USER_OBJ entry. The permissions specified by |

98 the file group class permission bits correspond to the permissions associated with

99 the ACL_GROUP_OBJ entry or the permissions associated with the ACL_MASK
100 entry if the ACL contains an ACL_MASK entry. The permissions specified by the |
101 file other class permission bits correspond to the permissions associated with the
102 ACL_OTHER entry.

103 The permissions associated with these ACL entries shall be identical to the per-
104 missions defined for the corresponding file permission bits. Modification of the
105 permissions associated with these ACL entries shall modify the corresponding file
106 permission bits and modification of the file permission bits shall modify the per-
107 missions of the corresponding ACL entries.

108 When the file permissions of an object are modified, e.g. using the chmod() func-
109 tion, then:

110 (1) the corresponding permissions associated with the ACL_USER_OBJ
111 entry shall be set equal to each of the file owner class permission bits

112 (2) if the ACL does not contain an ACL._MASK entry, then the corresponding
113 permissions associated with the ACL_GROUP_OBJ entry shall be set

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 41

114 equal to each of the file group class permission bits

115 (3) if the ACL contains an ACL_MASK entry, then the corresponding per-
116 missions associated with the ACL._MASK entry shall be set equal to each
117 of the file group class permission bits and the permissions associated
118 with the ACL_GROUP_OBJ entry shall not be modified.

119 (4) the corresponding permissions associated with the ACL_OTHER entry
120 shall be set equal to each of the file other class permission bits

121 23.1.3 Default ACLs

122 A default ACL is an additional ACL which may be associated with a directory, but|
123 which has no operational effect on the discretionary access on that directory. It
124 shall be possible to associate a default ACL with any directory for which
125 { POSIX ACL_EXTENDED} is in effect. If there is a default ACL associated with
126 a directory, then that default ACL shall be used, as specified in 23.1.4, to initial-
127 ize the access ACL for any object created in that directory. If the newly created
128 object is a directory and if the parent directory has a default ACL, then the new
129 directory inherits the parent’s default ACL as its default ACL. Entries within a
130 default ACL are manipulated using the same interfaces as those used for an
131 access ACL. A default ACL has the same minimum required entries as an access
132 ACL as specified in 23.1.1.

133 Directories are not required to have a default ACL. While any particular direc-
134 tory for which {_POSIX_ACL_EXTENDED} is in effect may have a default ACL, a
135 conforming implementation shall support the default ACL interface described
136 here. If a default ACL does not exist on a directory, then any implementation-
137 defined default ACL(s) may be applied to the access or default ACLs of objects
138 created in that directory. If no default ACL is applied, the initial access control
139 information shall be obtained as specified in 5.3 and 5.4. +

140 23.1.4 Associating an ACL with an Object at Object Creation Time

141 When an object is created, its access ACL is always initialized. If a default ACL is
142 associated with a directory, two components may be used to determine the initial
143 access ACL for objects created within that directory: -

144 (1) The mode parameter to functions which can create objects may be used |
145 by an application to specify the maximum discretionary access permis-
146 sions to be associated with the resulting object. There are four POSIX.1
147 functions which can be used to create objects: creat(), mkdir(), mkfifo(),
148 and open () (with the O_CREAT flag).

149 (2) The default ACL may be used by the owner of a directory to specify the
150 maximum discretionary access permissions to be associated with objects
151 created within that directory.

152 The initial access control information is obtained as is specified in 5.3 and 5.4. -
153 Implementations may provide an additional default ACL that is applied if a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

42 23 Access Control Lists

154
155
156

157
158

159

160
161
162
163
164

165
166

167
168
169
170

171
172
173
174
175

176
177
178

179
180

181
182
183
184

185
186
187
188

189
190
191
192
193

default ACL as defined by this standard is not present. Such an implementation-
defined default ACL interface may apply different access and/or default ACLs to
created objects based upon implementation-defined criteria.

The physical ordering of the ACL entries of a newly created object shall be
unspecified.

23.1.5 ACL Access Check Algorithm

A process may request discretionary read, write, execute/search or any
implementation-defined access mode of an object protected by an access ACL. The
algorithm below matches specific attributes of the process to ACL entries. The
process’s request is granted only if a matching ACL entry grants all of the
requested access modes.

The access check algorithm shall check the ACL entries in the following relative
order:

(1) the ACL_USER_OBJ entry

(2) any ACL_USER entries

(3) the ACL_GROUP_OBJ entry as well as any ACL._GROUP entries |
(4) the ACL_OTHER entry

Implementation-defined entries may be checked at any implementation-defined
points in the access check algorithm, as long as the above relative ordering is
maintained. Implementation-defined entries may grant or deny access but shall
not alter the access permitted to any process that does not match those implemen-
tation entries.

If no ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, or ACL_GROUP entries |
apply and no implementation-defined entries apply, the permissions in the
ACL_OTHER entry shall be used to determine access.

Note, the algorithm presented is a logical description of the access check. The
physical code sequence may be different.

(1) If the effective user ID of the process matches the user ID of the
object owner
then
set matched entry to ACL_USER_OBJ entry

(2) else if the effective user ID of the process matches the user ID
specified in any ACL_USER tag type ACL entry,
then
set matched entry to the matching ACL_USER entry

(3) else if the effective group ID or any of the supplementary group IDs
of the process match the group ID of the object or match the group ID
specified in any ACL_GROUP or ACL_GROUP_OBJ tag type ACL +
entry
then

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 43

194
195
196
197
198
199
200
201

202
203
204
205
206

207
208
209
210
211
212

213
214
215
216
217
218
219
220
221
222

223

224
225
226

227
228
229
230
231

44

(4)

(5)

if the requested access modes are granted by at least one entry
matched by the effective group ID or any of the supplementary
group IDs of the process

then
set matched entry to a granting entry
else
access is denied
endif
else if the requested access modes are granted by the ACL_OTHER |
entry of the ACL,
then
set matched entry to the ACL_OTHER entry
endif

If the requested access modes are granted by the matched entry
then
if the matched entry is an ACL_USER_OBJ or ACL_OTHER
entry
then
access is granted

else if the requested access modes are also granted by the
ACL_MASK entry or no ACL_MASK entry exists in the ACL
then
access is granted
else
access is denied
endif
else
access is denied
endif

23.1.6 ACL Functions

Functional interfaces are defined to manipulate ACLs and ACL entries. The func-
tions provide a portable interface for editing and manipulating the entries within
an ACL and the fields within an ACL entry.

Four groups of functions are defined to:

(1)
(2)
(3)
(4)

manage the ACL working storage area
manipulate ACL entries
manipulate an ACL on an object

translate an ACL into different formats.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

232

233
234
235

236

237
238

239

240

241
242

243
244
245
246
247

248
249

250
251

252
253
254
255

256
257
258
259
260
261
262
263
264

23.1.6.1 ACL Storage Management

These functions manage the storage areas used to contain working copies of
ACLs. An ACL in working storage shall not be used in any access control deci-
sions.

acl_dup() Duplicates an ACL in a working storage area

acl_free() Release the working storage area allocated to an ACL data
object

acl_init() Allocates and initializes an ACL working storage area

23.1.6.2 ACL Entry Manipulation

These functions manipulate ACL entries in working storage. The functions are
divided into several groups:

(1) Functions that manipulate complete entries in an ACL:
acl_copy_entry() Copies an ACL entry to another ACL entry
acl_create_entry() Creates a new entry in an ACL
acl_delete_entry() Deletes an entry from an ACL
acl_get_entry() Returns a descriptor to an ACL entry

acl_valid() Validates an ACL by checking for duplicate, miss-
ing, and ill-formed entries

(2) Functions that manipulate permissions within an ACL entry:
acl_add_perm() Adds a permission to a given permission set

acl_calc_mask() Sets the permission granted by the ACL_MASK
entry to the maximum permissions granted by the
ACL_GROUP, ACL_GROUP_OBJ, ACL_USER and
implementation-defined ACL entries

acl_clear_perms() Clears all permissions from a given permission set
acl_delete_perm() Deletes a permission from a given permission set
acl_get_permset() Returns the permissions in a given ACL entry
acl_set_permset() Sets the permissions in a given ACL entry

(3) Functions that manipulate the tag type and qualifier in an ACL entry:
acl_get_qualifier() Returns the qualifier in a given ACL entry
acl_get_tag_type() Returns the tag type in a given ACL entry
acl_set_qualifier() Sets the qualifier in a given ACL entry
acl_set_tag_type() Sets the tag type in a given ACL entry

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 45

265

266
267
268

269

270
271

272
273

274
275

276
277

278

279

280
281

282
283
284

285
286

287
288

289
290

291
292

293
294

295

296
297

46

23.1.6.3 ACL Manipulation on an Object

These functions read the contents of an access ACL or a default ACL into working
storage and write an ACL in working storage to an object’s access ACL or default
ACL. The functions also delete a default ACL from an object:

acl_delete_def file() Deletes the default ACL associated with an object

acl_get_fd() Reads the contents of an access ACL associated with a file
descriptor into working storage
acl_get file() Reads the contents of an access ACL or default ACL asso-

ciated with an object into working storage

acl_set_fd() Writes the ACL in working storage to the object associ-
ated with a file descriptor as an access ACL

acl_set_file() Writes the ACL in working storage to an object as an
access ACL or default ACL

23.1.6.4 ACL Format Translation

The standard defines three different representations for ACLs:

external form The exportable, contiguous, persistent representation of an
ACL in user-managed space

internal form The internal representation of an ACL in working storage
text form The structured text representation of an ACL
These functions translate an ACL from one representation into another.

acl_copy_ext() Translates an internal form of an ACL to an external form of

an ACL

acl_copy_int() Translates an external form of an ACL to an internal form of
an ACL

acl_from_text() Translates a text form of an ACL to an internal form of an
ACL

acl_size() Returns the size in bytes required to store the external form
of an ACL that is the result of an acl_copy_ext()

acl_to_text() Translates an internal form of an ACL to a text form of an
ACL

23.1.7 POSIX.1 Functions Covered by ACLs

The following table lists the POSIX.1 interfaces that are changed to reflect Access
Control Lists. There are no changes to the syntax of these interfaces.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

298
268
301
302
303
304
305
306
307
308

309

310

311
312
313
314

315

816
328
319

323
322

326
325

329
328

330
331

338
334

336
337

338

339
340

Existing POSIX.1
Function Section

access() 5.6.3
chmod() 5.6.4
creat() 5.3.2
fstat() 5.6.2
mkdir() 5.4.1
mkfifo() 5.4.2
open() 53.1
stat() 5.6.2

23.2 Header

The header <sys/ acl . h> defines the symbols used in the ACL interfaces.

Some of the data types used by the ACL functions are not defined as part of this
standard but shall be implementation-defined. If { POSIX_ACL} is defined, these
types shall be defined in the header <sys/ acl . h>, which contains definitions for
at least the types shown in Table 23-1. |

Table 23-1 - ACL Data Types
Defined Type Description

acl_entry_t Used as a descriptor for a specific ACL entry in ACL working
storage. This data type is non-exportable data.

acl_perm_t Used for individual object access permissions. This data type
is exportable data.

acl_permset_t Used for the set of object access permissions. This data type
is non-exportable data.

acl_t Used as a pointer to an ACL in ACL working storage. This
data type is non-exportable data.
acl_tag_t Used to distinguish different types of ACL entries. This data

type is exportable data.

acl_type_t Used to distinguish different types of ACLs (e.g., access,
default). This data type is exportable data.

The symbolic constants defined in Table 23-2, Table 23-3, Table 23-4, Table 23-5, +
Table 23-6, shall be defined in the header <sys/ acl . h>.

23.2.1 acl_entry_t

This typedef shall define an opaque, implementation-defined descriptor for an
ACL entry. The internal structure of an acl_entry_t is unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.2 Header 47

341

342
343

344
345

346
848
349

350
351

352

353

354
355
356

357

358
359

360

361
362

363

48

23.2.2 acl_perm_t

This typedef shall define a data type capable of storing an individual object access
permission.

Table 23-2 contains acl_perm_t values for acl_add_perm (), acl_clear_perms(), and
acl_delete_perm ().

Table 23-2 — acl_perm_t Values

Constant Description
ACL_EXECUTE ACL execute permission
ACL_READ ACL read permission
ACL_WRITE ACL write permission

These constants shall be implementation-defined unique values.

23.2.3 acl_permset_t

This typedef shall define the opaque, implementation-defined descriptor for a set
of object access permissions. The internal structure of an acl_permset_t is
unspecified.

23.2.4 acl_t
This typedef shall define a pointer to an opaque, implementation-defined ACL in
ACL working storage, the internal structure of which is unspecified.

23.2.5 acl_tag t

This typedef shall define a data type capable of storing an individual ACL entry
tag type.
Table 23-3 contains acl_tag t values for acl_get tag type() and acl_set tag type().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

364 Table 23-3 — acl_tag_t Values

866 Constant Description

367 ACL_GROUP ACL entry for a specific group
368 ACL_GROUP_OBJ ACL entry for the owning group
368 ACL_MASK ACL entry that denotes the
370 maximum permissions allowed
371 on all other ACL entry types
372 except for ACL_USER_OBJ
373 and ACL_OTHER (including
374 implementation-defined types +
375 in the file group class)

330 ACL_OTHER ACL entry for users whose pro-
378 cess attributes are not matched
379 in any other ACL entry

381 ACL_UNDEFINED_TAG Undefined ACL entry

382 ACL_USER ACL entry for a specific user
383 ACL_USER OBJ ACL entry for the object owner

384 These constants shall be implementation-defined unique values.

385 23.2.6 acl_type_t

386 This typedef shall define a data type capable of storing an individual ACL type.
387 Table 23-4 contains acl_type_t values for acl_get_file() and acl_set_file().

388 Table 23-4 — acl_type_t Values

886 Constant Description

391 ACL_TYPE_ACCESS Indicates an access ACL
392 ACL_TYPE_DEFAULT Indicates a default ACL

393 These constants shall be implementation-defined unique values.

394 23.2.7 ACL Qualifier

395 Table 23-5 contains the value of undefined user IDs or group IDs for the ACL |
396 qualifier.

397 Table 23-5 - ACL Qualifier Constants
368 Constant Description |
400 ACL_UNDEFINED_ID Undefined ID |

401 These constants shall be implementation-defined values.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.2 Header 49

402

403
404

405

406
408
409

410

411

412
413
414
415

416

417
418

419
420

421
422
423
424
425
426

427
428

429
430

431
432

433
434
435

436
437
438

50

23.2.8 ACL Entry

Table 23-6 contains the values used to denote ACL entries to be retrieved by the |

acl_get_entry() function. |

Table 23-6 - ACL Entry Constants
Constant Description
ACL_FIRST_ENTRY Return the first ACL entry in the ACL.
ACL_NEXT ENTRY Return the next ACL entry in the ACL.

These constants shall be implementation-defined values.

23.3 Text Form Representation

This section defines the long and short text forms of ACLs. The long text form is
defined first in order to give a complete specification with no exceptions. The
short text form is defined second because it is specified relative to the long text
form.

23.3.1 Long Text Form for ACLs

The long text form is used for either input or output of ACLs and is defined as fol-
lows:

<acl_entry>
[<acl_entry>] ...

Each <acl_entry> line shall contain one ACL entry with three required colon-
separated fields: an ACL entry tag type, an ACL entry qualifier, and the discre-
tionary access permissions. An implementation may define additional colon-
separated fields after the required fields. Comments may be included on any
<acl_entry> line. If a comment starts at the beginning of a line, then the entire
line shall be interpreted as a comment.

The first field contains the ACL entry tag type. This standard defines the follow-
ing ACL entry tag type keywords, one of which shall appear in the first field:

user A user ACL entry specifies the access granted to either the file
owner or a specified user.

group An group ACL entry specifies the access granted to either the file
owning group or a specified group.

other An other ACL entry specifies the access granted to any process
that does not match any user, group, or implementation-defined
ACL entries.

mask A mask ACL entry specifies the maximum access which can be
granted by any ACL entry except the user entry for the file owner
and the ot her entry.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

439

440
441

442
443

444
445
446

447

448
449

450
451
452
453

454
455
456
457
458

459
460
461
462
463

464
465
466
467
468

469
470

471
472
473
474

475
476
477
478

An implementation may define additional ACL entry types.

The second field contains the ACL entry qualifier (referred to in the remainder of
this section as qualifier). This standard defines the following qualifiers: |

uid This qualifier specifies a user name or a user ID number.
gid This qualifier specifies a group name or a group ID number.

empty This qualifier specifies that no uid or gid information is to be applied
to the ACL entry. An empty qualifier shall be represented by an
empty string or by white space.

An implementation may define additional qualifiers.

The third field contains the discretionary access permissions. This standard
defines the following symbolic discretionary access permissions:

r Read access
w Write access
X Execute/search access

- No access by this ACL entry.

The discretionary access permissions field shall contain exactly one each of the
following characters in the following order: r, w, and X. Each of these may be
replaced by the “-” character to indicate no access. An implementation may define]
additional characters following the required characters that represent
implementation-defined permissions.

A user entry with an empty qualifier shall specify the access granted to the file
owner. A user entry with a uid qualifier shall specify the access permissions
granted to the user name matching the uid value. If the uid value does not match
a user name, then the ACL entry shall specify the access permissions granted to
the user ID matching the numeric uid value. +

A group entry with an empty qualifier shall specify the access granted to the file
owning group. A gr oup entry with a gid qualifier shall specify the access permis-
sions granted to the group name matching the gid value. If the gid value does not
match a group name, then the ACL entry shall specify the access permissions
granted to the group ID matching the numeric gid value. +

The mask and ot her entries shall contain an empty qualifier. An implementa-
tion may define additional ACL entry types that use the empty qualifier.

A number-sign (#) starts a comment on an <acl_entry> line. A comment may start
at the beginning of a line, after the required fields and after any implementation-
defined, colon-separated fields. The end of the line denotes the end of the com-
ment. -

If an ACL entry contains permissions that are not also contained in the nask
entry, then the output text form for that <acl_entry> line shall be displayed as
described above followed by a number-sign (#), the string "effective: ", and the
effective access permissions for that ACL entry.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.3 Text Form Representation 51

479 White space is permitted in <acl _entry> lines as follows: at the start of the line; -
480 immediately before and after a “” separator; immediately before the first
481 number-sign (#) character; at any point after the first number-sign (#) character.

482 Comments shall have no effect on the discretionary access check of the object with
483 which they are associated. An implementation shall define whether or not com-
484 ments are stored with an ACL.

485 If an implementation allows the colon character “:” to be present in an ACL entry
486 qualifier, then that implementation shall provide a method for distinguishing
487 between a colon character as a field separator in an ACL entry definition and a
488 colon character as a component of the ACL entry qualifier value. -

489 23.3.2 Short Text Form for ACLs

490 The short text form is used only for input of ACLs and is defined as follows:
491 <acl_entry>[,<acl_entry>]... |

492 Each <acl entry> shall contain one ACL entry, as defined in 23.3.1, with two
493 exceptions.

494 The ACL entry tag type keyword shall appear in the first field in either its full
495 unabbreviated form or its single letter abbreviated form. The abbreviation for
496 user is “u”, the abbreviation for group is “g”, the abbreviation for ot her is “0”,
497 and the abbreviation for mask is “ni. An implementation may define additional
498 ACL entry tag type abbreviations.

499 There are no exceptions for the second field in the short text form for ACLs.

500 The discretionary access permissions shall appear in the third field. The symbolic—
501 string shall contain at most one each of the following characters in any order: r,
502 w, and X; implementations may define additional characters that may appear in
503 any order within the string. %

504 23.4 Functions

505 Support for the ACL facility functions described in this section is optional. If the
506 symbol { POSIX_ACL} is defined, the implementation supports the ACL option |
507 and all of the ACL functions shall be implemented as described in this section. If]
508 {_POSIX_ACL} is not defined, the result of calling any of these functions is |
509 unspecified.

510 The error [ENOTSUP] shall be returned in those cases where the system supports
511 the ACL facility but the particular ACL operation cannot be applied because of
512 restrictions imposed by the implementation.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

52 23 Access Control Lists

513
514

515

516
517

518

519
520
521
522

523
524

525

526
527

528

529
530

531
532

533

534

535
536

537

538

23.4.1 Add a Permission to an ACL Permission Set

Function: acl_add_perm()

23.4.1.1 Synopsis

#i ncl ude <sys/acl. h>

int acl _add_perm (acl _pernset t permset_d, acl_permt perm);

23.4.1.2 Description

The acl_add_perm() function shall add the permission contained in argument
perm to the permission set referred to by argument permset_d. An attempt to add
a permission that is already granted by the permission set shall not be considered
an error. -

Any existing descriptors that refer to permset_d shall continue to refer to that per-
mission set.

23.4.1.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.1.4 Errors

If any of the following conditions occur, the acl add perm() function shall return
-1 and set errno to the corresponding value:

[EINVAL] Argument permset_d is not a valid descriptor for a permission
set within an ACL entry.

Argument perm does not contain a valid acl perm ¢t value. -

23.4.1.5 Cross-References

acl_clear_perms(), 23.4.3; acl_delete_perm(), 23.4.10; acl_get permset(), 23.4.17;
acl_set_permset(), 23.4.23.

23.4.2 Calculate the File Group Class Mask

Function: acl calc mask()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 53

539

540
541

542

543
544
545
546
547
548
549
550
551
552
553
554

555

556
557
558

559

560
561

562

563
564

565

566
567

568
569

54

23.4.2.1 Synopsis

#i ncl ude <sys/acl. h>

int acl _calc_mask (acl _t [hel_p);

23.4.2.2 Description

The acl_calc_mask() function shall calculate and set the permissions associated
with the ACL_MASK ACL entry of the ACL referred to by acl_p. The value of the
new permissions shall be the union of the permissions granted by the
ACL_GROUP, ACL_GROUP_OBJ, ACL_USER, and any implementation-defined
tag types which match processes in the file group class contained in the ACL
referred to by acl_p. If the ACL referred to by acl_p already contains an
ACL_MASK entry, its permissions shall be overwritten; if it does not contain an
ACL_MASK entry, one shall be added. If the ACL referred to by acl_p does not
contain enough space for the new ACL entry, then additional working storage
may be allocated. If the working storage cannot be increased in the current loca-
tion, then it may be relocated and the previous working storage shall be released
and a pointer to the new working storage shall be returned via acl_p.

The order of existing entries in the ACL is undefined after this function.

Any existing ACL entry descriptors that refer to entries in the ACL shall continue
to refer to those entries. Any existing ACL pointers that refer to the ACL referred
to by acl_p shall continue to refer to the ACL.

23.4.2.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.2.4 Errors

If any of the following conditions occur, the acl calc mask() function shall return
-1 and set errno to the corresponding value:

[EINVAL] Argument acl_p does not point to a pointer to a valid ACL.

[ENOMEM] The acl_calc_mask() function is unable to allocate the memory
required for an ACL_MASK ACL entry. -

23.4.2.5 Cross-References
acl_get_entry(), 23.4.14; acl_valid(), 23.4.28.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

570

571

572

573
574

575

576
577

578
579

580

581
582

583

584
585

586
587

588

589
590

591

592

593

594
595

23.4.3 Clear All Permissions from an ACL Permission Set

Function: acl_clear_perms()

23.4.3.1 Synopsis

#i ncl ude <sys/acl . h>
int acl _clear_pernms (acl _pernset _t permset_d);
23.4.3.2 Description

The acl_clear perms() function shall clear all permissions from the permission set
referred to by argument permset_d. -

Any existing descriptors that refer to permset_d shall continue to refer to that per-
mission set.

23.4.3.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.3.4 Errors

If any of the following conditions occur, the acl_clear_perms() function shall
return —1 and set errno to the corresponding value:

[EINVAL] Argument permset_d is not a valid descriptor for a permission
set within an ACL entry. -

23.4.3.5 Cross-References

acl_add_perm(), 23.4.1; acl_delete_perm/(), 23.4.10; acl_get_permset(), 23.4.17;
acl_set_permset(), 23.4.23.

23.4.4 Copy an ACL Entry

Function: acl_copy_entry()

23.4.4.1 Synopsis

#i ncl ude <sys/acl . h>

int acl _copy_entry (acl_entry_t dest_d, acl_entry_t src_d);

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 55

596

597
598
599

600
601
602

603

604
605

606

607
608

609
610

611

612
613

614

615

616

617
618

619

620
621
622
623
624
625
626
627

56

23.4.4.2 Description

The acl_copy entry() function shall copy the contents of the ACL entry indicated
by the src_d descriptor to the existing ACL entry indicated by the dest_d descrip-
tor. The src_d and dest_d descriptors may refer to entries in different ACLs.

The src_d, dest_d and any other ACL entry descriptors that refer to entries in
either ACL shall continue to refer to those entries. The order of all existing
entries in both ACLs shall remain unchanged.

23.4.4.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.4.4 Errors

If any of the following conditions occur, the acl_copy_entry() function shall return
-1 and set errno to the corresponding value:

[EINVAL] Argument src d or dest d is not a valid descriptor for an ACL
entry.

Arguments src_d and dest_d reference the same ACL entry. -

23.4.4.5 Cross-References

acl_get_entry(), 23.4.14.

23.4.5 Copy an ACL From System to User Space

Function: acl_copy_ext()

23.4.5.1 Synopsis

#i ncl ude <sys/acl. h>

ssize_t acl_copy_ext (void [bufp, acl_t acl, ssize_t size),

23.4.5.2 Description

The acl_copy_ext() function shall copy an ACL, pointed to by acl, from system-
managed space to the user managed space pointed to by buf p. The size parame-
ter represents the size in bytes of the buffer pointed to by buf p. The format of the
ACL placed in the user-managed space pointed to by dbuf p shall be a contiguous,
persistent data item, the format of which is unspecified. It is the responsibility of
the invoker to allocate an area large enough to hold the copied ACL. The size of
the exportable, contiguous, persistent form of the ACL may be obtained by invok-
ing the acl_size() function.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

628
629
630
631

632
633
634
635

636
637

638

639

640
641
642

643
644

645
646

647
648

649

650
651

652

653
654
655

656
657
658

Any ACL entry descriptors that refer to an entry in the ACL referenced by acl
shall continue to refer to those entries. Any existing ACL pointers that refer to
the ACL referenced by acl shall continue to refer to the ACL.

23.4.5.3 Returns

Upon successful completion, the acl_copy_ext() function shall return the number
of bytes placed in the user-managed space pointed to by buf p. Otherwise, a value
of (ssize_t) -1 shall be returned and errno shall be set to indicate the error. |

23.4.5.4 Errors

If any of the following conditions occur, the acl_copy_ext() function shall return a
value of (ssize_t) —1 and set errno to the corresponding value: |

[EINVAL] The size parameter is zero or negative.
Argument acl does not point to a valid ACL.

The ACL referenced by acl contains one or more improperly
formed ACL entries, or for some other reason cannot be
translated into the external form ACL. -

[ERANGE] The size parameter is greater than zero but smaller than the
length of the contiguous, persistent form of the ACL.

23.4.5.5 Cross-References

acl_copy _int(), 23.4.6; acl_size(), 23.4.26.

23.4.6 Copy an ACL From User to System Space

Function: acl_copy int()

23.4.6.1 Synopsis

#i ncl ude <sys/acl. h>

acl t acl _copy_int (const void [buf p);

23.4.6.2 Description

The acl_copy_int() function shall copy an exportable, contiguous, persistent form
of an ACL, pointed to by buf p, from user-managed space to system-managed
space.

This function may cause memory to be allocated. The caller should free any
releaseable memory, when the new ACL is no longer required, by calling
acl_free() with the (void Dacl_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 57

659
660

661

662
663
664

665

666
667

668
669

670
671
672

673
674

675

676

677

678
679

680

681
682

683
684
685

686
687
688
689
690

58

Upon successful completion, this function shall return a pointer that references
the ACL in ACL working storage.

23.4.6.3 Returns

Upon successful completion, the acl _copy int() function shall return a pointer
referencing the ACL in ACL working storage. Otherwise, a value of (acl_t)NULL
shall be returned, and errno shall be set to indicate the error.

23.4.6.4 Errors

If any of the following conditions occur, the acl_copy_int() function shall return a
value of (acl/_t)NULL and set errno to the corresponding value:

[EINVAL] The buffer pointed to by argument buf p does not contain a valid|
external form ACL.

[ENOMEM] The ACL working storage requires more memory than is allowed
by the hardware or system-imposed memory management con-
straints. -

23.4.6.5 Cross-References

acl_copy_ext(), 23.4.5; acl_get_entry(), 23.4.14; acl_free(), 23.4.12.

23.4.7 Create a New ACL Entry

Function: acl_create_entry()

23.4.7.1 Synopsis

#i ncl ude <sys/acl. h>

int acl _create _entry (acl _t [Chel p, acl _entry_ t Centry p);

23.4.7.2 Description

The acl_create_entry() function creates a new ACL entry in the ACL pointed to by
the contents of the pointer argument acl_p.

This function may cause memory to be allocated. The caller should free any
releaseable memory, when the ACL is no longer required, by calling acl_free()
with (void Dacl_t as an argument.

If the ACL working storage cannot be increased in the current location, then the
working storage for the ACL pointed to by acl_p may be relocated and the previ-
ous working storage shall be released. A pointer to the new working storage shall
be returned via acl_p. Upon successful completion, the acl_create_entry() function
shall return a descriptor for the new ACL entry via entry p.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

691 The components of the new ACL entry are initialized in the following ways: the
692 ACL tag type component shall contain ACL_UNDEFINED_TAG, the qualifier
693 component shall contain ACL_UNDEFINED_ID, and the set of permissions shall
694 have no permissions enabled. Other features of a newly created ACL entry shall
695 be implementation-defined. Any existing ACL entry descriptors that refer to
696 entries in the ACL shall continue to refer to those entries.

697 23.4.7.3 Returns

698 Upon successful completion, the function shall return a value of zero. Otherwise,
699 a value of —1 shall be returned and errno shall be set to indicate the error.

700 23.4.7.4 Errors

701 If any of the following conditions occur, the acl_create_entry() function shall
702 return -1 and set errno to the corresponding value:

703 [EINVAL] Argument acl_p does not point to a pointer to a valid ACL.

704 [ENOMEM] The ACL working storage requires more memory than is allowed
705 by the hardware or system-imposed memory management con-
706 straints. -

707 23.4.7.5 Cross-References
708 acl_delete_entry(), 23.4.9; acl_get_entry(), 23.4.14.

709 23.4.8 Delete a Default ACL by Filename

710 Function: acl_delete _def file()

711 23.4.8.1 Synopsis

712 #include <sys/acl.h> |
713 int acl _delete _def file (const char [path p); |

714 23.4.8.2 Description

715 The acl_delete_def file() function deletes a default ACL from the directory whose
716 pathname is pointed to by the argument path_p. The effective user ID of the pro- |
717 cess must match the owner of the directory or the process must have appropriate
718 privilege to delete the default ACL from path p. If { POSIX_CAP} is defined, then|
719 appropriate privilege shall include CAP_FOWNER. In addition, if
720 { POSIX MAC} is defined, then the process must have MAC write access to the |
721 directory.

722 If the argument path_p is not a directory, then the function shall fail. It shall not]
723 be considered an error if path p is a directory and either |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 59

724
725

726
727
728

729
730
731

732

733
734

735
736
737

738
739

740
741
742
743

744
745

746

747

748
749

750
751

752
753

60

{_ POSIX_ACL_EXTENDED} is not in effect for path p, or path p does not have a|
default ACL.

Upon successful completion, acl_delete_def file() shall delete the default ACL
associated with the argument path_p. If acl_delete_def file() is unsuccessful, the
default ACL associated with the argument path_p shall not be changed.

23.4.8.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.8.4 Errors

If any of the following conditions occur, the acl_delete_def file() function shall
return —1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix
or the object exists and the process does not have appropriate
access rights.

If {_ POSIX_MAC} is defined, MAC write access to path_p is
denied.

[ENAMETOOLONG]
The length of the path_p argument exceeds {PATH_MAX]}, or a
pathname component is longer than {NAME_MAX} while
{POSIX_NO_TRUNC} is in effect.

[ENOENT] The named object does not exist or the path_p argument points
to an empty string. -

[ENOTDIR] A component of the path prefix is not a directory.
Argument path_p does not refer to a directory.

[EPERM] The process does not have appropriate privilege to perform the
operation to delete the default ACL.

[EROFS] This function requires modification of a file system which is
currently read-only.

23.4.8.5 Cross-References
acl_get_file(), 23.4.16; acl_set_file(), 23.4.22. -

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

754 23.4.9 Delete an ACL Entry

755 Function: acl_delete_entry()

756 23.4.9.1 Synopsis

757 #include <sys/acl.h> |
758 int acl _delete_entry (acl _t acl, acl _entry t entry d); |

759 23.4.9.2 Description

760 The acl_delete_entry() function shall remove the ACL entry indicated by the
761 entry_d descriptor from the ACL pointed to by acl.

762 Any existing ACL entry descriptors that refer to entries in acl other than that
763 referred to by entry d shall continue to refer to the same entries. The argument
764 entry d and any other ACL entry descriptors that refer to the same ACL entry are
765 undefined after this function completes. Any existing ACL pointers that refer to
766 the ACL referred to by acl shall continue to refer to the ACL.

767 23.4.9.3 Returns

768 Upon successful completion, the function shall return a value of zero. Otherwise,
769 a value of —1 shall be returned and errno shall be set to indicate the error.

770 23.4.9.4 Errors

771 1If any of the following conditions occur, the acl_delete_entry() function shall
772 return -1 and set errno to the corresponding value:

773 [EINVAL] Argument acl does not point to a valid ACL. Argument entry_d +
774 is not a valid descriptor for an ACL entry in acl.

775 [ENOSYS] This function is not supported by the implementation.

776 23.4.9.5 Cross-References

777 acl_copy_entry(), 23.4.4; acl_create_entry(), 23.4.7; acl_get_entry(), 23.4.14.

778 23.4.10 Delete Permissions from an ACL Permission Set
779 Function: acl_delete_perm()

780 23.4.10.1 Synopsis

781 #include <sys/acl.h> |

782 int acl_del ete_perm (acl _pernset _t permset_d, acl_permt perm); |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 61

783

784
785
786
787

788
789

790

791
792

793

794
795

796
797

798
799

800

801
802

803

804

805

806
807

808

809
810

811
812
813

62

23.4.10.2 Description

The acl_delete_perm() function shall delete the permission contained in argument
perm from the permission set referred to by argument permset_d. An attempt to
delete a permission that is not granted by the ACL entry shall not be considered

an error.

Any existing descriptors that refer to permset_d shall continue to refer to that per-

mission set.

23.4.10.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.10.4 Errors

If any of the following conditions occur, the acl_delete_perm() function shall

return —1 and set errno to the corresponding value:

[EINVAL] Argument permset_d is not a valid descriptor for a permission

set within an ACL entry.

Argument perm does not contain a valid acl_perm_t value.

[ENOSYS] This function is not supported by the implementation.

23.4.10.5 Cross-References

acl_add_perm(), 23.4.1; acl_clear_perms(), 23.4.3; acl_get_permset(), 23.4.17,

acl_set_permset(), 23.4.23.

23.4.11 Duplicate an ACL

Function: acl_dup()

23.4.11.1 Synopsis

#i ncl ude <sys/acl . h>

acl _t acl _dup (acl _t acl);

23.4.11.2 Description

The acl_dup () function returns a pointer to a copy of the ACL pointed to by argu-

ment acl.

This function may cause memory to be allocated. When the new ACL is no longer|
required, the caller should free any releaseable memory by calling acl_free() with

the (void Dacl_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

23 Access Control Lists

814
815

816

817
818
819

820

821
822

823

824
825
826

827
828

829

830

831

832
833

834

835
836
837

838
839
840
841
842

Any existing ACL pointers that refer to the ACL referred to by acl shall continue
to refer to the ACL.

23.4.11.3 Returns

Upon successful completion, the function shall return a pointer to the duplicate
ACL. Otherwise, a value of (acl_t)NULL shall be returned and errno shall be set
to indicate the error.

23.4.11.4 Errors

If any of the following conditions occur, the acl_dup() function shall return a
value of (acl/_t)NULL and set errno to the corresponding value:

[EINVAL] Argument acl does not point to a valid ACL.

[ENOMEM] The ACL working storage requires more memory than is allowed
by the hardware or system-imposed memory management con-
straints. -

23.4.11.5 Cross-References

acl_free(), 23.4.12; acl_get entry(), 23.4.14.

23.4.12 Release Memory Allocated to an ACL Data Object

Function: acl_free()

23.4.12.1 Synopsis

#i ncl ude <sys/acl . h>

int acl _free (void [bbjp);

23.4.12.2 Description

The acl free() function shall free any releasable memory currently allocated to the
ACL data object identified by 0bj_p. The argument obj p may identify an ACL, an
ACL entry qualifier, or a pointer to a string allocated by one of the ACL functions.

If the item identified by obj_p is an acl_t, the acl_t and any existing descriptors
that refer to parts of the ACL shall become undefined. If the item identified by
obj p is a string (charD), then use of the charOshall become undefined. If the item
identified by 0bj p is an ACL entry qualifier (void[), then use of the void[shall
become undefined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 63

843 23.4.12.3 Returns

844 Upon successful completion, the function shall return a value of zero. Otherwise,
845 a value of -1 shall be returned and errno shall be set to indicate the error.

846 23.4.12.4 Errors

847 If any of the following conditions occur, the acl_free() function shall return -1 and
848 set errno to the corresponding value:

849 [EINVAL] The value of the 0bj_p argument is invalid. -

850 23.4.12.5 Cross-References

851 acl copy int(), 23.4.6; acl _create entry(), 23.4.7; acl dup(), 23.4.11;
852 acl_from_text(), 23.4.13; acl_get_fd(), 23.4.15; acl_get_file(), 23.4.16;
853 acl_get_permset(), 23.4.17; acl_init(), 23.4.20.

854 23.4.13 Create an ACL from Text

855 Function: acl_from_text()

856 23.4.13.1 Synopsis

857 #include <sys/acl.h> |
858 acl_t acl_fromtext (const char [buf p); |

859 23.4.13.2 Description

860 The acl_from_text() function converts the text form of the ACL referred to by |
861 buf p into the internal form of an ACL and returns a pointer to the working
862 storage that contains the ACL. The acl_from_text() function shall accept as input +
863 the long text form and short text form of an ACL as described in sections 23.3.1. +
864 and 23.3.2.

865 This function may cause memory to be allocated. The caller should free any
866 releaseable memory, when the new ACL is no longer required, by calling
867 acl_free() with the (void Dacl_t as an argument.

868 Permissions within each ACL entry within the short text form of the ACL shall be—
869 specified only as absolute values.

870 23.4.13.3 Returns

871 Upon successful completion, the function shall return a pointer to the internal |
872 representation of the ACL in working storage. Otherwise, a value of (acl_t)NULL
873 shall be returned and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

64 23 Access Control Lists

874 23.4.13.4 Errors

875 If any of the following conditions occur, the acl_from text() function shall return a
876 value of (acl/_t)NULL and set errno to the corresponding value:

877 [EINVAL] Argument buf p cannot be translated into an ACL.

878 [ENOMEM] The ACL working storage requires more memory than is allowed
879 by the hardware or system-imposed memory management con-
880 straints. -

881 23.4.13.5 Cross-References
882 acl_free(), 23.4.12; acl_get_entry(), 23.4.14; acl_to_text(), 23.4.27.

883 23.4.14 Get an ACL Entry

884 Function: acl_get_entry()

885 23.4.14.1 Synopsis

886 #i nclude <sys/acl.h>

887 int acl _get _entry (acl _t acl,
888 int entry_id,
889 acl _entry_t Centry_p);

890 23.4.14.2 Description

891 The acl get entry() function shall obtain a descriptor for an ACL entry as
892 specified by entry_id within the ACL indicated by argument acl. If the value of
893 entry_id is ACL_FIRST_ENTRY, then the function shall return in entry_p a +
894 descriptor for the first ACL entry within acl. If a call is made to acl_get_entry() |
895 with entry_id set to ACL_NEXT_ENTRY when there has not been either an ini- |
896 tial successful call to acl get entry(), or a previous successful call to
897 acl_get entry() following a call to acl calc._ mask(), acl _copy_int(),
898 acl_create_entry(), acl_delete_entry(), acl_dup(), acl_from_text(), acl_get_fd(),
899 acl_get_file(), acl_set_fd(), acl_set_file(), or acl_valid(), then the effect is
900 unspecified.

901 Upon successful execution, the acl_get_entry() function shall return a descriptor
902 for the ACL entry via entry p.

903 Calls to acl_get_entry() shall not modify any ACL entries. Subsequent operations
904 using the returned ACL entry descriptor shall operate on the ACL entry within
905 the ACL in ACL working storage. The order of all existing entries in the ACL
906 shall remain unchanged. Any existing ACL entry descriptors that refer to entries
907 within the ACL shall continue to refer to those entries. Any existing ACL
908 pointers that refer to the ACL referred to by acl shall continue to refer to the
909 ACL.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 65

910 23.4.14.3 Returns

911 If the function successfully obtains an ACL entry, the function shall return a
912 value of 1. If the ACL has no ACL entries, the function shall return a value of |
913 zero. If the value of entry_id is ACL_NEXT_ENTRY and the last ACL entry in
914 the ACL has already been returned by a previous call to acl_get_entry(), the func-
915 tion shall return a value of zero until a successful call with entry_id of +
916 ACL_FIRST_ENTRY is made. Otherwise, a value of —1 shall be returned and
917 errno shall be set to indicate the error.

918 23.4.14.4 Errors

919 If any of the following conditions occur, the acl_get_entry() function shall return
920 -1 and set errno to the corresponding value:

921 [EINVAL] Argument acl does not point to a valid ACL. Argument entry_id +
922 is neither ACL_NEXT_ENTRY nor ACL_FIRST ENTRY. -

923 23.4.14.5 Cross-References

924 acl_calc_mask(), 23.4.2; acl_copy_int(), 23.4.6; acl_create_entry(), 23.4.7;
925 acl_delete_entry(), 23.4.9; acl_dup(), 23.4.11; acl_from_text(), 23.4.13;
926 acl_get_fd(), 23.4.15; acl_get_file(), 23.4.16; acl_init(), 23.4.20; acl_set_fd(),
927 23.4.21; acl_set_file(), 23.4.22; acl_valid (), 23.4.28.

928 23.4.15 Get an ACL by File Descriptor

929 Function: acl_get fd()

930 23.4.15.1 Synopsis

931 #include <sys/acl.h> |
932 acl _t acl _get fd (int fd); |

933 23.4.15.2 Description

934 The acl_get_fd() function retrieves the access ACL for the object associated with |
935 the file descriptor, fd. If { POSIX_MAC} is defined, then the process must have |
936 MAC read access to the object associated with fd. The ACL shall be placed into +
937 working storage and acl_get_fd() shall return a pointer to that storage.

938 This function may cause memory to be allocated. The caller should free any
939 releaseable memory, when the new ACL is no longer required, by -calling
940 acl_free() with the (void Dacl_t as an argument.

941 The ACL in the working storage is an independent copy of the ACL associated
942 with the object referred to by fd. The ACL in the working storage shall not partici-
943 pate in any access control decisions.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

66 23 Access Control Lists

944

945
946
947

948
949
950

951
952

953

954
955
956

957

958
959

960

961

962

963
964

965

966
967
968
969
970

971
972
973

974
975
976
977

23.4.15.3 Returns

Upon successful completion, the function shall return a pointer to the ACL that
was retrieved. Otherwise, a value of (acl_t)NULL shall be returned and errno
shall be set to indicate the error.

23.4.15.4 Errors
If any of the following conditions occur, the acl get fd() function shall return a
value of (acl_t)NULL and set errno to the corresponding value:

[EACCES] If {_ POSIX_MAC} is defined, MAC read access to the object is |
denied.

[EBADF] The fd argument is not a valid file descriptor.

[ENOMEM] The ACL working storage requires more memory than is allowed
by the hardware or system-imposed memory management con-
straints. -

23.4.15.5 Cross-References

acl_free(), 23.4.12; acl_get_entry(), 23.4.14; acl_get_file(), 23.4.16; acl_set_fd(),
23.4.21.

+

23.4.16 Get an ACL by Filename

Function: acl_get_file()

23.4.16.1 Synopsis

#i ncl ude <sys/acl.h> |

acl _t acl _get file (const char [path_p, acl _type_t type); |

23.4.16.2 Description

The acl_get_file() function retrieves the access ACL associated with an object or
the default ACL associated with a directory. The pathname for the object or
directory is pointed to by the argument path_p. If { POSIX_MAC} is defined, then|
the process must have MAC read access to path_p. The ACL shall be placed into +
working storage and acl_get file() shall return a pointer to that storage.

This function may cause memory to be allocated. The caller should free any
releaseable memory, when the new ACL is no longer required, by calling
acl_free() with the (void Dacl_t as an argument.

The value of the argument #ype is used to indicate whether the access ACL or the
default ACL associated with path_p is returned. If type is ACL_TYPE_ACCESS,
then the access ACL shall be returned. If type is ACL_TYPE_DEFAULT, then the
default ACL shall be returned. If type is ACL_TYPE_DEFAULT and no default

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 67

978 ACL is associated with path_p, then an ACL containing zero ACL entries shall be
979 returned. If the argument type specifies a type of ACL that cannot be associated
980 with path_p, then the function shall fail.

981 The ACL in the working storage is an independent copy of the ACL associated
982 with the object referred to by path_p. The ACL in the working storage shall not
983 participate in any access control decisions.

984 23.4.16.3 Returns

985 Upon successful completion, the function shall return a pointer to the ACL that
986 was retrieved. Otherwise, a value of (acl_t)NULL shall be returned and errno
987 shall be set to indicate the error.

988 23.4.16.4 Errors

989 If any of the following conditions occur, the acl_get file() function shall return a
990 value of (acl_t)NULL and set errno to the corresponding value:

991 [EACCES] Search permission is denied for a component of the path prefix

992 or the object exists and the process does not have appropriate
993 access rights.

994 If { POSIX_MAC} is defined, MAC read access to the object is
995 denied.

996 Argument type specifies a type of ACL that cannot be associated
997 with path_p.

998 [EINVAL] Argument type is not ACL_TYPE_ACCESS,
999 ACL_TYPE_DEFAULT, or a valid implementation-defined
1000 value.

1001 [ENAMETOOLONG]

1002 The length of the path_p argument exceeds {PATH_MAX]}, or a
1003 pathname component is longer than {NAME_MAX} while
1004 {POSIX_NO_TRUNC} is in effect.

1005 [ENOENT] The named object does not exist or the path_p argument points
1006 to an empty string.

1007 [ENOMEM] The ACL working storage requires more memory than is allowed
1008 by the hardware or system-imposed memory management con-
1009 straints. -

1010 [ENOTDIR] A component of the path prefix is not a directory.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

68 23 Access Control Lists

1011 23.4.16.5 Cross-References

1012 acl delete def file(), 23.4.8; acl free(), 23.4.12; acl get entry(), 23.4.14; +
1013 acl get fd(), 23.4.15; acl_set_file(), 23.4.22,

1014 23.4.17 Retrieve the Permission Set from an ACL Entry

1015 Function: acl_get permset()

1016 23.4.17.1 Synopsis

1017 #incl ude <sys/acl.h> |
1018 int acl_get pernset (acl_entry t entry d, acl_pernset t [permset p); |

1019 23.4.17.2 Description

1020 The acl_get_permset() function returns via permset_p a descriptor to the permis-
1021 sion set in the ACL entry indicated by entry_d. Subsequent operations using the -
1022 returned permission set descriptor operate on the permission set within the ACL
1023 entry. +

1024 Any ACL entry descriptors that refer to the entry referred to by entry_d shall con-
1025 tinue to refer to those entries.

1026 23.4.17.3 Returns

1027 Upon successful completion, the function shall return a value of zero. Otherwise,
1028 a value of -1 shall be returned and errno shall be set to indicate the error.

1029 23.4.17.4 Errors

1030 If any of the following conditions occur, the acl get permset() function shall
1031 return -1 and set errno to the corresponding value:

1032 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry. -

1033 23.4.17.5 Cross-References

1034 acl_add_perm(), 23.4.1; acl_clear_perms(), 23.4.3; acl_delete_perm(), 23.4.10;
1035 acl_set_permset(), 23.4.23.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 69

1036
1037

1038

1039
1040

1041

1042
1043
1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1058
1059
1060

1061
1062
1063
1064

1065

1066
1067
1068

1069

1070
1071

70

23.4.18 Get ACL Entry Qualifier

Function: acl_get _qualifier()

23.4.18.1 Synopsis

#i ncl ude <sys/acl. h>

void [hcl _get qualifier (acl _entry t entry d);

23.4.18.2 Description

The acl_get_qualifier() function retrieves the qualifier of the tag for the ACL entry
indicated by the argument entry_d into working storage and returns a pointer to
that storage. -

If the value of the tag type in the ACL entry referred to by entry _d is ACL_USER,
then the value returned by acl get qualifier() shall be a pointer to type uid_t. If
the value of the tag type in the ACL entry referred to by entry_d is ACL_GROUP,
then the value returned by acl_get_qualifier() shall be a pointer to type gid_t. If
the value of the tag type in the ACL entry referred to by entry_d is
implementation-defined, then the value returned by acl_get_qualifier() shall be a
pointer to an implementation-defined type. If the value of the tag type in the ACL
entry referred to by entry d is ACL_UNDEFINED_TAG, ACL_USER_OBJ,
ACL_GROUP_OBJ, ACL_OTHER, ACL_MASK, or an implementation-defined
value for which a qualifier is not supported, then acl_get_qualifier() shall return a
value of (void DONULL and the function shall fail. Subsequent operations using
the returned pointer shall operate on an independent copy of the qualifier in
working storage.

This function may cause memory to be allocated. The caller should free any
releaseable memory, when the new qualifier is no longer required, by calling
acl_free() with the voidOas an argument.

The argument entry_d and any other ACL entry descriptors that refer to entries
within the ACL containing the entry referred to by entry_d shall continue to refer
to those entries. The order of all existing entries in the ACL containing the entry
referred to by entry_d shall remain unchanged.

23.4.18.3 Returns

Upon successful completion, the function shall return a pointer to the tag qualifier
that was retrieved into ACL working storage. Otherwise, a value of (void)NULL
shall be returned and errno shall be set to indicate the error.

23.4.18.4 Errors

If any of the following conditions occur, the acl_get_qualifier() function shall
return a value of (void DNULL and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

1072

1073
1074
1075

1076
1077
1078

1079

1080
1081

1082
1083

1084

1085
1086

1087

1088
1089
1090
1091

1092
1093
1094

1095

1096
1097
1098
1099

1100

1101
1102

[EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

The value of the tag type in the ACL entry referenced by argu-
ment entry_d is not ACL_USER, ACL_GROUP, nor a valid
implementation-defined value.

[ENOMEM] The value to be returned requires more memory than is allowed
by the hardware or system-imposed memory management con-
straints. -

23.4.18.5 Cross-References

acl_create_entry(), 23.4.7; acl free(), 23.4.12; acl get entry(), 23.4.14;
acl_get_tag_type(), 23.4.19; acl_set_qualifier(), 23.4.24; acl_set_tag_type(), 23.4.25.

23.4.19 Get ACL Entry Tag Type

Function: acl_get_tag type()

23.4.19.1 Synopsis

#i ncl ude <sys/acl . h> |

int acl _get_tag_type (acl_entry_t entry_d, acl_tag_t [tag type_p); |

23.4.19.2 Description

The acl_get_tag_type() function returns the tag type for the ACL entry indicated
by the argument entry_d. Upon successful completion, the location referred to by —
the argument tag type p shall be set to the tag type of the ACL entry referred to
by entry_d.

The argument entry_d and any other ACL entry descriptors that refer to entries
in the same ACL shall continue to refer to those entries. The order of all existing
entries in the ACL shall remain unchanged.

23.4.19.3 Returns

Upon successful completion, the function shall set the location referred to by
tag_type_p to the tag type that was retrieved and shall return a value of zero.
Otherwise, a value of -1 shall be returned, the location referred to by tag type p, |
shall not be changed, and errno shall be set to indicate the error.

23.4.19.4 Errors

If any of the following conditions occur, the acl get tag type() function shall
return -1 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 71

1103

1104

1105
1106

1107

1108

1109

1110
1111

1112

1113
1114
1115
1116
1117
1118

1119
1120
1121

1122

1123
1124
1125

1126

1127
1128

1129

1130
1131
1132

72

[EINVAL] Argument entry_d is not a valid descriptor for an ACL entry. -

23.4.19.5 Cross-References

acl_create_entry(), 23.4.7; acl_get entry(), 23.4.14; acl get qualifier(), 23.4.18;
acl_set_qualifier(), 23.4.24; acl_set_tag type(), 23.4.25.

23.4.20 Initialize ACL Working Storage

Function: acl_init()

23.4.20.1 Synopsis

#i ncl ude <sys/acl.h> |

acl _t acl_init (int count); |

23.4.20.2 Description

The acl_init() function allocates and initializes working storage for an ACL of at
least count ACL entries. A pointer to the working storage is returned. The work-
ing storage allocated to contain the ACL is freed by a call to acl_free(). When the -
area is first allocated, it shall contain an ACL that contains no ACL entries. The
initial state of any implementation-defined attributes of the ACL shall be
implementation-defined.

This function may cause memory to be allocated. The caller should free any
releaseable memory, when the new ACL is no longer required, by calling
acl_free() with the (void Dacl_t as an argument.

23.4.20.3 Returns

Upon successful completion, this function shall return a pointer to the working
storage. Otherwise, a value of (acl/_t)NULL shall be returned and errno shall be
set to indicate the error.

23.4.20.4 Errors

If any of the following conditions occur, the acl_init() function shall return a value
of (acl_t)NULL and set errno to the corresponding value:
[EINVAL] The value of count is less than zero.

[ENOMEM] The acl_t to be returned requires more memory than is allowed
by the hardware or system-imposed memory management con-
straints. -

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

1133
1134

1135
1136

1137

1138
1139

1140

1141
1142
1143
1144
1145
1146

1147
1148

1149
1150
1151
1152
1153
1154

1155
1156

1157
1158
1159

1160

1161
1162

1163

1164
1165

23.4.20.5 Cross-References
acl_free(), 23.4.12.

23.4.21 Set an ACL by File Descriptor

Function: acl_set_fd()

23.4.21.1 Synopsis

#i ncl ude <sys/acl.h> |
int acl _set _fd (int fd, acl _t acl); |

23.4.21.2 Description

The acl_set_fd() function associates an access ACL with the object referred to by
fd. The effective user ID of the process must match the owner of the object or the |
process must have appropriate privilege to set the access ACL on the object. If
{ POSIX_CAP} is defined, then appropriate privilege shall include |
CAP_FOWNER. In addition, if { POSIX_MAC} is defined, then the process must |
have MAC write access to the object.

The acl_set_fd() function will succeed only if the ACL referred to by acl is valid as+
defined by the acl_valid () function.

Upon successful completion, acl_set_fd() shall set the access ACL of the object -
referred to by argument fd to the ACL contained in the argument acl. The object’s
previous access ACL shall no longer be in effect. The invocation of this function
may result in changes to the object’s file permission bits. If acl_set_fd() is unsuc- +
cessful, the access ACL and the file permission bits of the object referred to by +
argument fd shall not be changed.

The ordering of entries within the ACL referred to by acl may be changed in some
implementation-defined manner.

Existing ACL entry descriptors that refer to entries within the ACL referred to by
acl shall continue to refer to those entries. Existing ACL pointers that refer to the
ACL referred to by acl shall continue to refer to the ACL.

23.4.21.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of -1 shall be returned and errno shall be set to indicate the error.

23.4.21.4 Errors

If any of the following conditions occur, the acl_set_fd() function shall return -1
and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 73

1166 [EACCES] If { POSIX_MAC} is defined, MAC write access to the object is |
1167 denied. -

1168 [EBADF] The fd argument is not a valid file descriptor.

1169 [EINVAL] Argument acl does not point to a valid ACL. The function

1170 acl_valid() may be used to determine what errors are in the
1171 ACL. +
1172 fpathconf() indicates that {_POSIX_ACL_EXTENDED} is in +
1173 effect for the object referenced by the argument fd, but the ACL +
1174 has more entries than the value returned by fpathconf() for +
1175 {_ POSIX_ACL_PATH_MAX]} for the object.

1176 [ENOSPC] The directory or file system that would contain the new ACL
1177 cannot be extended or the file system is out of file allocation
1178 resources. -

1179 [EPERM] The process does not have appropriate privilege to perform the

1180 operation to set the ACL.
1181 [EROFS] This function requires modification of a file system which is
1182 currently read-only.

1183 23.4.21.5 Cross-References

1184 acl_delete_def file(), 23.4.8; acl_get entry(), 23.4.14; acl_get_fd(), 23.4.15;
1185 acl_get_file(), 23.4.16; acl_set_file(), 23.4.22; acl_valid(), 23.4.28.

1186 23.4.22 Set an ACL by Filename
1187 Function: acl_set_file()

1188 23.4.22.1 Synopsis

1189 #incl ude <sys/acl.h> |
1190 int acl_set_file (const char [path_p, acl_type_t type, acl _t acl); |

1191 23.4.22.2 Description

1192 The acl_set_file() function associates an access ACL with an object or associates a
1193 default ACL with a directory. The pathname for the object or directory is pointed
1194 to by the argument path p. The effective user ID of the process must match the |
1195 owner of the object or the process must have appropriate privilege to set the
1196 access ACL or the default ACL on path_p. If {_ POSIX_CAP} is defined, then |
1197 appropriate privilege shall include CAP_FOWNER. In addition, if
1198 {_POSIX_MAC} is defined, then the process must have MAC write access to the |
1199 object.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

74 23 Access Control Lists

1200 The value of the argument type is used to indicate whether the access ACL or the
1201 default ACL associated with path_p is being set. If type is ACL_TYPE_ACCESS,
1202 then the access ACL shall be set. If type is ACL_TYPE_DEFAULT, then the
1203 default ACL shall be set. If the argument type specifies a type of ACL that cannot
1204 be associated with path_p, then the function shall fail.

1205 The acl_set_file() function will succeed only if the access or default ACL is valid as
1206 defined by the acl_valid() function.

1207 If { POSIX_ACL_EXTENDED} is not in effect for path_p, then the function shall
1208 fail if:

1209 (1) the value of type is ACL_TYPE_DEFAULT, or
1210 (2) the value of type is ACL_TYPE_ACCESS and acl is not a minimum ACL.

1211 If the value of type is ACL_TYPE_ACCESS or ACL_TYPE_DEFAULT, then the
1212 function shall fail if the number of entries in acl is greater than the value path-
1213 conf() returns for { POSIX_ACL_PATH_MAX]} for path_p. |

1214 Upon successful completion, acl_set file() shall set the access ACL or the default -
1215 ACL, as indicated by type d, of the object path p to the ACL contained in the
1216 argument acl. The object’s previous access ACL or default ACL, as indicated by
1217 type_d, shall no longer be in effect. The invocation of this function may result in
1218 changes to the object’s file permission bits. If acl_set_file() is unsuccessful, the
1219 access ACL, the default ACL, and the file permission bits of the object referred to +
1220 by argument path_p shall not be changed.

1221 The ordering of entries within the ACL referred to by acl may be changed in some
1222 implementation-defined manner.

1223 Existing ACL entry descriptors that refer to entries within the ACL referred to by
1224 acl shall continue to refer to those entries. Existing ACL pointers that refer to the
1225 ACL referred to by acl shall continue to refer to the ACL.

1226 23.4.22.3 Returns

1227 Upon successful completion, the function shall return a value of zero. Otherwise,
1228 a value of -1 shall be returned and errno shall be set to indicate the error.

1229 23.4.22.4 Errors

1230 If any of the following conditions occur, the acl_set_file() function shall return -1
1231 and set errno to the corresponding value:

1232 [EACCES] Search permission is denied for a component of the path prefix

1233 or the object exists and the process does not have appropriate
1234 access rights.

1235 If { POSIX_MAC} is defined, MAC write access to path _p is |
1236 denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 75

1237 Argument type specifies a type of ACL that cannot be associated
1238 with path_p. -

1239 [EINVAL] Argument acl does not point to a valid ACL. The function
1240 acl_valid() may be used to determine what errors are in the
1241 ACL.

1242 Argument type is not ACL_TYPE_ACCESS,
1243 ACL_TYPE_DEFAULT, or a valid implementation-defined
1244 value. +
1245 pathconf() indicates that { POSIX_ACL_EXTENDED} is in +
1246 effect for the object referenced by the argument path p, but the +
1247 ACL has more entries than the value returned by pathconf() for +
1248 {_ POSIX_ACL_PATH_MAX]} for the object.

1249 [ENAMETOOLONG]

1250 The length of the path_p argument exceeds {PATH_MAX]}, or a
1251 pathname component is longer than {NAME_MAX} while
1252 {POSIX_NO_TRUNC} is in effect.

1253 [ENOENT] The named object does not exist or the path_p argument points
1254 to an empty string.

1255 [ENOSPC] The directory or file system that would contain the new ACL
1256 cannot be extended or the file system is out of file allocation
1257 resources. -

1258 [ENOTDIR] A component of the path prefix is not a directory.

1259 [EPERM] The process does not have appropriate privilege to perform the

1260 operation to set the ACL.
1261 [EROFS] This function requires modification of a file system which is
1262 currently read-only.

1263 23.4.22.5 Cross-References
1264 acl delete_def file(), 23.4.8; acl get entry(), 23.4.14; acl get fd(), 23.4.15;
1265 acl_get_file(), 23.4.16; acl_set_fd(), 23.4.21; acl_valid(), 23.4.28.

1266 23.4.23 Set the Permissions in an ACL Entry
1267 Function: acl_set_permset()

1268 23.4.23.1 Synopsis

1269 #incl ude <sys/acl . h> |

1270 int acl _set_pernset (acl_entry_t entry_d, acl_pernset _t permset_d); |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

76 23 Access Control Lists

1271 23.4.23.2 Description

1272 The acl_set permset() function shall set the permissions of the ACL entry indi-
1273 cated by argument entry d to the permissions contained in the argument
1274 permset_d. -

1275 Any ACL entry descriptors that refer to the entry containing the permission set
1276 referred to by permset_d shall continue to refer to those entries. Any ACL entry
1277 descriptors that refer to the entry referred to by entry d shall continue to refer to
1278 that entry.

1279 23.4.23.3 Returns

1280 Upon successful completion, the function shall return a value of zero. Otherwise,
1281 a value of —1 shall be returned and errno shall be set to indicate the error.

1282 23.4.23.4 Errors

1283 If any of the following conditions occur, the acl_set permset() function shall return
1284 -1 and set errno to the corresponding value:

1285 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

1286 Argument permset_d is not a valid descriptor for a permission
1287 set within an ACL entry.

1288 Argument permset_d contains values which are not valid
1289 acl_permset_t values. -

1290 23.4.23.5 Cross-References

1291 acl add _perm(), 23.4.1; acl clear perms(), 23.4.3; acl delete perm(), 23.4.10;
1292 acl get permset(), 23.4.17.

1293 23.4.24 Set ACL Entry Tag Qualifier

1294 Function: acl_set_qualifier()

1295 23.4.24.1 Synopsis

1296 #incl ude <sys/acl. h>

1297 int acl _set_qualifier (acl_entry_t entry_ d,
1298 const voi d [tag _qualifier_p);

1299 23.4.24.2 Description

1300 The acl_set qualifier() function shall set the qualifier of the tag for the ACL entry
1301 indicated by the argument entry d to the value referred to by the argument
1302 tag qualifier_p. +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 77

1303
1304
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314
1315

1316

1317
1318

1319

1320
1321

1322
1323
1324
1325

1326
1327

1328
1329

1330
1331

1332

1333

78

If the value of the tag type in the ACL entry referred to by entry_d is ACL_USER,
then the value referred to by tag_qualifier_p shall be of type uid_t. If the value of
the tag type in the ACL entry referred to by entry_d is ACL_GROUP, then the
value referred to by tag_qualifier_p shall be of type gid_t. If the value of the tag
type in the ACL entry referred to by entry_d is ACL_UNDEFINED_TAG, |
ACL_USER_OBJ, ACL_GROUP_OBJ, ACL_OTHER or ACL_MASK, then
acl_set_qualifier() shall return an error. If the value of the tag type in the ACL
entry referred to by entry_d is an implementation-defined value, then the value
referred to by tag_qualifier_p shall be implementation-defined.

Any ACL entry descriptors that refer to the entry referred to by entry_d shall con-—
tinue to refer to that entry. This function may cause memory to be allocated. The
caller should free any releaseable memory, when the ACL is no longer required,
by calling acl_free() with a pointer to the ACL as an argument.

23.4.24.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of -1 shall be returned and errno shall be set to indicate the error.

23.4.24.4 Errors

If any of the following conditions occur, the acl set qualifier() function shall
return -1 and set errno to the corresponding value:

[EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

The tag type of the ACL entry referred to by the argument
entry d is not ACL_USER, ACL_GROUP, nor a valid
implementation-defined value.

The value pointed to by the argument tag_qualifier_p is not
valid.

[ENOMEM] The acl _set qualifier() function is unable to allocate the memory
required for an ACL tag qualifier. -

23.4.24.5 Cross-References

acl_get_qualifier(), 23.4.18.

23.4.25 Set ACL Entry Tag Type

Function: acl_set_tag _type()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

1334

1335
1336

1337

1338
1339

1340
1341

1342

1343
1344

1345

1346
1347

1348

1349

1350
1351

1352
1353

1354

1355
1356

1357

1358
1359
1360

1361
1362

23.4.25.1 Synopsis

#i ncl ude <sys/ acl. h>

int acl _set_tag_type (acl_entry_t entry_d, acl_tag_t tag_type);
23.4.25.2 Description

The acl_set_tag_type() function shall set the tag type for the ACL entry referred to
by the argument eniry_d to the value of the argument tag_type. -

Any ACL entry descriptors that refer to the entry referred to by entry d shall con-
tinue to refer to that entry.

23.4.25.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of —1 shall be returned and errno shall be set to indicate the error.

23.4.25.4 Errors

If any of the following conditions occur, the acl set tag type() function shall
return -1 and set errno to the corresponding value:

[EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

Argument tag_type is not a valid tag type. -

23.4.25.5 Cross-References

acl_get_tag_type(), 23.4.19.

23.4.26 Get the Size of an ACL

Function: acl_size()

23.4.26.1 Synopsis

#i ncl ude <sys/acl . h>

ssize_t acl _size (acl_t acl);

23.4.26.2 Description

The acl_size() function shall return the size, in bytes, of the buffer required to
hold the exportable, contiguous, persistent form of the ACL pointed to by argu-
ment acl, when converted by acl_copy_ext().

Any existing ACL entry descriptors that refer to entries in acl shall continue to
refer to the same entries. Any existing ACL pointers that refer to the ACL

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 79

1363 referred to by acl shall continue to refer to the ACL. The order of ACL entries
1364 within acl shall remain unchanged.

1365 23.4.26.3 Returns

1366 Upon successful completion, the acl size() function shall return the size in bytes
1367 of the contiguous, persistent form of the ACL. Otherwise, a value of (ssize_t) -1
1368 shall be returned and errno shall be set to indicate the error.

1369 23.4.26.4 Errors

1370 If any of the following conditions occur, the acl_size() function shall return
1371 (ssize_t) —1 and set errno to the corresponding value:

1372 [EINVAL] Argument acl does not point to a valid ACL. -

1373 23.4.26.5 Cross-References

1374 acl_copy_ext(), 23.4.5.

1375 23.4.27 Convert an ACL to Text

1376 Function: acl _to_text()

1377 23.4.27.1 Synopsis

1378 #incl ude <sys/acl.h> |
1379 char [Acl _to_text (acl _t acl, ssize_t [Oen_p); |

1380 23.4.27.2 Description

1381 The acl_to_text() function translates the ACL pointed to by argument acl into a
1382 NULL terminated character string. If the pointer len_p is not NULL, then the -
1383 function shall return the length of the string (not including the NULL terminator)
1384 in the location pointed to by len_p. The format of the text string returned by -
1385 acl_to_text() shall be the long text form defined in 23.3.1. |

1386 This function allocates any memory necessary to contain the string and returns a +
1387 pointer to the string. The caller should free any releaseable memory, when the +
1388 new string is no longer required, by calling acl_free() with the (void Dchar as an +
1389 argument. +

1390 Any existing ACL entry descriptors that refer to entries in acl shall continue to
1391 refer to the same entries. Any existing ACL pointers that refer to the ACL
1392 referred to by acl shall continue to refer to the ACL. The order of ACL entries
1393 within acl shall remain unchanged.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

80 23 Access Control Lists

1394

1395
1396
1397

1398

1399
1400

1401

1402
1403
1404

1405
1406
1407

1408
1409

1410

1411

1412

1413
1414

1415

1416
1417

1418
1419
1420
1421
1422

1423
1424
1425
1426

23.4.27.3 Returns

Upon successful completion, the function shall return a pointer to the long text
form of an ACL. Otherwise, a value of (char DONULL shall be returned and errno
shall be set to indicate the error.

23.4.27.4 Errors

If any of the following conditions occur, the acl to text() function shall return a
value of (char ONULL and set errno to the corresponding value:

[EINVAL] Argument acl does not point to a valid ACL.

The ACL denoted by acl contains one or more improperly formed
ACL entries, or for some other reason cannot be translated into a
text form of an ACL.

[ENOMEM] The character string to be returned requires more memory than
is allowed by the hardware or system-imposed memory manage-
ment constraints. -

23.4.27.5 Cross-References
acl_free(), 23.4.12; acl_from_text(). 23.4.13.

23.4.28 Validate an ACL

Function: acl valid()

23.4.28.1 Synopsis

#i ncl ude <sys/acl. h>

int acl _valid (acl _t acl);

23.4.28.2 Description

The acl_valid() function checks the ACL referred to by the argument acl/ for vali-
dity.

The three required entries (ACL_USER_OBJ, ACL_GROUP_OBJ, and
ACL_OTHER) shall exist exactly once in the ACL. If the ACL contains any
ACL_USER, ACL_GROUP, or any implementation-defined entries in the file
group class, then one ACL_MASK entry shall also be required. The ACL shall
contain at most one ACL_MASK entry.

The qualifier field shall be unique among all entries of the same POSIX.1le ACL
facility defined tag type. The tag type field shall contain valid values including
any implementation-defined values. Validation of the values of the qualifier field
is implementation-defined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 81

1427
1428

1429
1430
1431

1432
1433
1434

1435

1436
1437

1438

1439
1440

1441
1442
1443

1444

1445
1446

82

The ordering of entries within the ACL referred to by acl may be changed in some
implementation-defined manner.

Existing ACL entry descriptors that refer to entries within the ACL referred to by
acl shall continue to refer to those entries. Existing ACL pointers that refer to the
ACL referred to by acl shall continue to refer to the ACL.

If multiple errors occur in the ACL, the order of detection of the errors and, as a
result, the ACL entry descriptor returned by acl_valid() shall be implementation-
defined.

23.4.28.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of -1 shall be returned and errno shall be set to indicate the error.

23.4.28.4 Errors

If any of the following conditions occur, the acl_valid() function shall return -1
and set errno to the corresponding value:

[EINVAL] Argument acl does not point to a valid ACL.
One or more of the required ACL entries is not present in acl.

The ACL contains entries that are not unique. -

23.4.28.5 Cross-References

acl_get _entry(), 23.4.14; acl _get fd(), 23.4.15; acl _get file(), 23.4.16; acl _init(),
23.4.20; acl_set_fd(), 23.4.21; acl_set_file(), 23.4.22.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23 Access Control Lists

©Oo =3I OOt bW N

10

12

13
14

15

16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31

Section 24: Audit

24.1 General Overview

There are four major functional components of the POSIX.1 audit interface
specification:

(1) Interfaces for a conforming application to construct and write records to
an audit log and control the auditing of the current process

(2) Interfaces for reading an audit log and manipulating audit records

(3) The definition of a standard set of events, based on the POSIX.1 function
interfaces, that shall be reportable in conforming implementations

(4) The definition of the contents of audit records.

This standard defines which interfaces require an appropriate privilege, and the
relevant capabilities if the POSIX capability option is in use.

Support for the interfaces defined in this section is optional but shall be provided
if the symbol {_POSIX_AUD} is defined.

24.1.1 Audit Logs

The standard views the destination of audit records that are recorded, and the
source of records read by an audit post-processing application, as an “audit log”.
Audit logs map to the POSIX abstraction of a “file”: that is, POSIX file interfaces
such as open() can generally be used to gain access to audit logs, subject to the
access controls of the system.

As viewed at the POSIX interface, a log contains a sequence of audit records;
interfaces are provided to write records to a log, and to read records from it.

A conforming implementation shall support a “system audit log”: that is, a log
that is the destination of system-generated audit records (e.g. reporting on use of]
security-relevant POSIX.1 interfaces), and of application-generated records that
an application sends to that log. The system audit log may correspond to different
files at different times. An application that sends records to the system audit log
does not have to be able to open() the corresponding file; instead an appropriate
privilege is required. This protects the integrity of the system audit log. A post-
processing application that reads records from the system audit log can gain
access to the log through open () of the file that currently corresponds to it.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 83

32
33
34

35

36
37
38
39

40

41
42
43

44
45

46
47
48
49
50

51
52

53
54
55
56
57
58
59
60
61
62

63

64
65
66

67

68
69

84

The internal format of audit logs, and of the records within them, is unspecified
(because of this, the POSIX read() and write() interfaces should not generally be
used to access audit logs).

24.1.2 Audit Records

Audit records describe events; that is, there is a correspondence between some
actual event that occurred and the audit record reporting it. An audit record pro-
vides a description of one event. With an audit record, a report is given of what
happened, who will be held accountable for it, what it affected, and when.

Audit records are generated in two ways:

e By a system conforming to the POSIX.1 audit option, to report on use of its
security relevant interfaces. This is known as system auditing, and the
records are known as system-generated records.

e By an application with the appropriate privilege, to report on its own activi-
ties. These are known as application-generated records.

This standard does not specify the method by which audit records are written to
the audit log nor does it specify the internal format in which audit records are
stored. The standard specifies only the interfaces by which application-generated
records are delivered to the system and by which system- and application-
generated records are reported to a conforming application.

Note that the standard does not specify the manner by which system-generated
records are delivered to the system audit log; this is left up to the implementation.

An audit record that is generated by an application, or an auditable event that
occurs in a system conforming to the POSIX.1 audit option, may or may not actu-
ally be reported to a conforming application. This standard specifies that these
events shall be reportable on a conforming implementation, but not that they
always be reported. The record will be reported only if { POSIX AUD} was
defined at the time the event occurred and was defined at the time the event com-
pleted. The results are indeterminate if { POSIX_AUD} was not defined through
the lifetime of the event. There may also be other implementation-specific con-
trols on the events that are actually reported (in particular, a conforming imple-
mentation may have some configurable selectivity of the events that are reported).

24.1.2.1 Audit Record Contents

Although there is no requirement on how the system stores an audit record, logi-
cally it appears to the post-processing application, and to a self-auditing applica-
tion constructing a record, to have several parts:

¢ one or more headers, see below

e one or more sets of subject attributes, describing the process(es) that
caused the event to be reported

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

70

71
72

73
74
75

76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92
93
94
95
96
97
98

99

100
101
102
103
104

105
106

107
108

109

e zero or more sets of event-specific data

e zero or more sets of object attributes, describing objects affected by the
event.

Records are required to have at least one header and set of subject attributes.
Conforming implementations and self-auditing applications may add further
parts, of any type; the contents of each of the required parts is also extensible.

A post-processing application can obtain a descriptor to each of the parts, and
using these descriptors can then obtain the contents of each part. An audit record
header contains, amongst other things, the event type, time and result. There is
also a record format indicator, currently limited to defining that the data in the
record is in the format used by the current system. The header also contains a
version number, identifying the version of this standard to which the record con-
tent conforms. Post-processing applications should examine this value to ensure
that the version is one for which they can process the information in the record.

The event type in the header defines the minimum set of information found in the
record. This standard specifies the required content for POSIX.1 events that are
required to be auditable: that is, the content of the event-specific and object parts
of the record; the event type for these system-generated events is an integer.
Implementations may define additional content for such events, and additional
events and their content. Self-auditing applications may add further events, with
application-specific types and contents; the event type for these application-
generated events is a text string.

To ensure that users can be made individually accountable for their security-
relevant actions, an “audit identifier”, or audit ID, that an implementation can
use to uniquely identify each accountable user, is included in the header of each
record. If the record is related to an event that is not associated with any indivi-
dual user (e.g., events recorded before a user has completed authentication, or
events from daemons), the implementation may report a null audit ID for that
record.

24.1.3 Audit Interfaces

Self-auditing applications need a standard means of constructing records and
adding them into an audit log. Additionally, applications having the appropriate
privilege may need to suspend system auditing of their actions. However, the
request to suspend system auditing is advisory and may be rejected by the imple-
mentation.

Portable audit post-processing utilities need a standard means to access records
in an audit log and a standard means to analyze the content of the records.

Several groups of functions are defined for use by portable applications. These
functions are used to:

(1) Construct audit records

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 85

110
111
112
113

114
115

116

117

118
119

120

121
122

123

124
125

126
127

128
129
130
131
132
133

134
135

136
137

138
139

140
141

142
143

86

(2) Write audit records

(3) Control system auditing of the current process
(4) Read audit records

(5) Analyze an audit record

(6) Save audit records in user-managed store and return them to system
managed store.

The following sections provide an overview of those functions.

24.1.3.1 Accessing an Audit Log

Audit logs are accessed via the POSIX.1 open() and close() functions. The system
audit log is also written directly by the aud_write() function (see below).

24.1.3.2 Constructing Audit Records

Functions are provided to get access to an unused audit record in working store,
and to duplicate an existing record:

aud_init_record() Get access to an unused audit record in working store.

aud_dup_record() Create a duplicate of an existing audit record in working
store.

Various other functions manipulate audit records. New sections can be added to
an audit record:

aud_put hdr() Add an empty header to an audit record

aud_put subj() Add an empty set of subject attributes to an audit record

aud_put_event() Add an empty set of event-specific data to an audit record

aud_put_obj() Add an empty set of object attributes to an audit record
And data can be added to each type of section:

aud_put_hdr_info() Add a data item to a header in an audit record

aud_put_subj_info() Add a data item to a set of subject attributes in an audit
record

aud_put_event_info() Add a data item to a set of event-specific data in an audit
record

aud_put_obj info() Add a data item to a set of object attributes in an audit
record.

Data items can also be deleted from each type of section:
aud_delete_hdr _info() Delete a data item from a header in an audit record

aud_delete_subj info() Delete a data item from a set of subject attributes in an
audit record

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

144
145

146
147

148
149
150
151
152

153
154

155
156
157

158

159
160

161

162

163
164
165
166
167
168
169
170

171

172
173

174
175
176
177
178
179
180

aud_delete_event_info() Delete a data item from a set of event-specific data in
an audit record

aud_delete_obj_info() Delete a data item from a set of object attributes in an
audit record.

And whole sections can be deleted too:
aud_delete_hdr() Delete a header from an audit record
aud_delete_subj() Delete a set of subject attributes from an audit record
aud_delete_event()Delete a set of event-specific data from an audit record
aud_delete_obj() Delete a set of object attributes from an audit record.

A function is provided to obtain the audit ID of the user accountable for the
actions of a specified process:

aud_get_id() Get the audit ID of a process with a specified process ID.
This allows, for example, a server process to include the
audit ID of a client in a record it generates.

A function is provided to check the validity of an audit record:

aud_valid() Validates an audit record by checking for, at least, a valid
header.

24.1.3.3 Writing Audit Records

A single function is provided to write a record to an audit log:

aud_write() When a program wants to write a record to an audit log, it
calls aud_write(). The system then adds the record to the
log. This could be used by a self-auditing application that
has constructed the record, or by an audit post-processing
application that has read the record from an audit log and
now wants to preserve it in another log for later processing.
Appropriate privilege is required to use this interface to
write to the system audit log.

24.1.3.4 Controlling System Auditing

A single function is provided to allow a self-auditing application to control system
auditing of its operations:

aud_switch() Suspend or resume system auditing of the current process,
or query the current state of system auditing for the current
process. The system may or may not actually suspend
(either partially or completely) its auditing of the process,
depending on the implementation-specific audit policy
currently in use. Appropriate privilege is required to use
this interface.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 87

181

182
183

184
185
186
187

188

189
190

191
192

193
194

195
196

197
198

199
200

201
202

203
204

205
206
207
208
209

210

211
212

213
214

215
216

217
218

88

24.1.3.5 Reading Audit Records

A single function is provided to read an audit record from an audit log into system
managed store.

aud_read() Read the next record from the audit log and return a
descriptor to it in working store. The descriptor can then be
used as an argument to any of the audit functions that
manipulate audit records.

24.1.3.6 Analyzing an Audit Record

Functions are provided to get descriptors for the various sections of an audit
record, and to get data items from within each type of section:

aud_get_hdr() Get the descriptor for a header from an audit record.
aud_get_hdr_info() Get an item from within a header of an audit record.
aud_get_subj() Get the descriptor for a subject attribute set from an

audit record.

aud_get_subj info() Get an item from within a subject attribute set from an
audit record.

aud_get_event() Get the descriptor for a set of event-specific data from
an audit record.

aud_get_event _info() Get an item from within a set of event-specific data
from an audit record.

aud_get_obj() Get a descriptor for an object attribute set from an
audit record.

aud_get_obj_info() Get an item from within an object attribute set in an
audit record.

To allow a post-processing application to interact with an audit administrator,
either to display records or to obtain record selection criteria from the administra-
tor, interfaces are provided to convert a record to text, to convert between the
internal and human-readable forms of event types and audit IDs, and to find out
all the system event types reportable in the audit log:

aud_rec_to text() Convert an entire audit record into human-readable text.

aud_evid_to_text() Map a numeric identifier for a system audit event to a text
string.

aud_evid_from_text() Map a text string, representing an system audit event type,
to a numeric audit event.

aud id to text() Map an audit ID to text identifying an individual user.
aud_id_from_text() Map text identifying an individual user to an audit ID.

aud_get_all_evid() Get a list of all system generated audit event types currently
reportable on the system. This interface retrieves both

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

219

220

221
222
223
224
225

226
227

228
229
230
231

232
233

234
235

236
237

238
239

240

241
242
243
244

245

246
247
248
249
250
251

POSIX.1 and implementation-specific event types.

24.1.3.7 Storing Audit Records

A pair of functions are provided for placing audit records in user-managed space
and conversely, returning audit records to system-managed space; for the former,
a function is provided that determines how much space is needed. This facility
provides applications with the ability to save selected records outside an audit log
for later processing.

aud_copy_ext() The aud_copy_ext() function is provided to convert the
record to a “byte-copyable” format in user-managed space.

aud_copy_int() The aud_copy_int() function is provided to convert the
record from a “byte-copyable” format in user-managed space
into system-dependent, internal format in system-managed
space.

aud_size() Return the size of user-managed space needed to hold a
record.

Note that it is also possible to transfer an audit record from one log to another,
without using user-managed space, by use of aud_read () and aud_write().

Finally, an interface is provided to allow an application to free any memory allo-
cated by the various audit functions:

aud_free() Many of the above interfaces may allocate memory space.
The aud_free() interface frees all the releasable space.

24.1.4 Summary of POSIX.1 System Interface Impact

When {_POSIX_AUD} is defined, there is no impact on the interface syntax of any
POSIX.1 function, nor on the function semantics defined by POSIX.1. However,
use of some POSIX.1 functions may cause audit records to be reported, see section
24.2.1.1, below.

24.2 Audit Record Content

Section 24.1.2.1, defines the overall structure of an audit record, viewed through
these interfaces, as consisting of headers, subject attribute sets, sets of event-
specific data items, and object attribute sets. This section specifies the minimum
set of event types which shall be reportable in a conforming implementation, and
for each of these event types defines the minimum required contents of the set of
event-specific items for the event and the minimum required object attribute sets.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 89

252

253
254

255
256
257

258

259
260
261
262
263
264
265

90

24.2.1 Auditable Interfaces and Event Types

This section defines the minimum set of audit event types that shall be reportable
by a conforming system.

Two kinds of auditing are defined. First there is auditing, by the system, of
operations performed by programs at the system interface level. Second there is
auditing by applications of their own operations.

24.2.1.1 Auditing at the System Interface

The following interfaces, which are derived from POSIX.1 and the POSIX.le
options, are defined as the minimum set of system interface functions that shall
be reportable on a conforming implementation. For each interface, a correspond-
ing POSIX.1e audit event is defined. For each defined event, a numeric constant
uniquely identifying the audit event is defined in the <sys/ audi t. h> header.
For all the interfaces except fork(), a single audit record shall be reportable for
each occasion that the interface is used.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

266 If { POSIX_AUD} is defined, the following interfaces shall be auditable: |

267 Table 24-1 — Interfaces and Corresponding Audit Events
268 Interface Event Type
270 aud_switch() AUD AET AUD SWITCH
271 aud_write() AUD AET AUD WRITE
272 chdir() AUD_AET CHDIR
273 chmod() AUD_AET CHMOD
274 chown() AUD AET CHOWN
275 creat() AUD_AET CREAT
276 dup() AUD_AET DUP

277 dup2() AUD_AET DUP

278 exec() AUD_AET EXEC
279 execl() AUD_AET EXEC
280 execlp() AUD_AET EXEC
281 execv() AUD AET EXEC
282 execup() AUD AET EXEC
283 execle() AUD_AET EXEC
284 execve() AUD AET EXEC
285 _exit() AUD_AET _EXIT
286 fork() AUD_AET FORK
287 kill() AUD_AET KILL
288 link() AUD_AET LINK
289 mkdir() AUD_AET _MKDIR
290 mkfifo() AUD_AET MKFIFO
291 open() AUD AET OPEN
292 opendir() AUD AET OPEN
293 pipe() AUD_AET PIPE

294 rename() AUD AET RENAME
295 rmdir() AUD_AET RMDIR
296 setgid() AUD_AET SETGID
297 setuid() AUD_AET SETUID
298 unlink() AUD_AET UNLINK
299 utime() AUD_AET UTIME

300 The aud_write() function is auditable only when an attempt to write to the sys-
301 tem audit log fails.

302 The fentl() function when used with command F DUPFD also generates audit
303 events of type AUD_AET DUP.

304 If { POSIX_ACL} is defined, the following interfaces shall be auditable: |

8086 Interface Event Type

307 acl_delete_def file() AUD_AET_ACL_DELETE_DEF_FILE
308 acl_set_fd() AUD_AET_ACL_SET_FD

309 acl_set_file() AUD_AET _ACL_SET_FILE

310 If { POSIX_CAP} is defined, the following interfaces shall be auditable: |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 91

812
313
314
315

316

818
319
320
321

322

823
325
326
327

328
329
330

331

332
333
334
335
336
337

338

339
340
341
342
343
344
345
346
347
348
349

350
3561
352
353
354

92

Interface Event Type
cap_set_fd() AUD_AET CAP_SET FD
cap_set_file() AUD_AET CAP_SET FILE
cap_set_proc() AUD_AET CAP_SET_PROC

If {_POSIX_INF} is defined, the following interfaces shall be auditable: |

Interface Event Type
inf_set_fd() AUD_AET INF_SET FD
inf_set_file() AUD_AET INF _SET FILE
inf_set_proc() AUD_AET_INF_SET_PROC

If {_ POSIX_MAC} is defined, the following interfaces shall be auditable:

Interface Event Type
mac_set_fd() AUD_AET_MAC_SET_FD
mac_set_file() AUD_AET_MAC_SET_FILE
mac_set_proc() AUD_AET_MAC_SET_PROC

Event types recording use of other system interfaces shall be implementation-
defined; a complete set of such events shall be obtainable through the
aud_get_all_evid() interface.

24.2.1.2 Auditing by Applications

No specific types are defined for auditing by applications. The event types used
by applications are character strings (to reduce the chances of different applica-
tions using the same types and ensure they do not clash with the integer event
types used for system-generated events) and applications are free to add their
own audit event types. Applications which generate their own audit records will
use the aud_write() function passing the event type in the record header.

24.2.2 Audit Event Types and Record Content

This clause defines the minimum required content of audit records for each of the
standard event types. The required contents of the header is the same for all
records, and is defined in aud_get hdr info(); the required content of the set of
subject attributes is similar for all records, and is defined in aud_get subj info();
the required contents of a set of object attributes is defined in aud_get_obj _info().
This section defines the required minimum content for the set of items specific to
each event, and the required minimum object attribute sets for each event. A con-
forming implementation may include additional items in the required header, set
of subject attributes, set of event-specific items, and object attribute sets, or may
add additional sets, but the required content must be reported before these
implementation-specific additions.

A header, subject attribute set, set of event-specific items, and object attribute set
from an audit record are not C-language structures; each is a separate logical sec-
tion within the record, with components accessed using the aud _get Oinfo()
interfaces described below. An argument item_id of these interfaces identifies the
component to access; a value for this argument for each component is defined in

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

355

356
357
358
359
360
361
362

363

364
365

366
367
368

868
371

372
373

374
375
376
377
378
379
380

381

382
383

384
385
386

888
389
390
391

392
393

394
395
396

the tables below.

Unless otherwise specified, event-specific data contains the argument values
requested for the operation. If the argument is not available (for example, if the
caller supplied a NULL or invalid pointer for a pathname), the
aud_get_event_info() function shall return an aud_info_t structure with a zero len
member. Pathname values reported as arguments may be the exact values
passed as arguments, or may be expanded by the implementation to full path-
names.

24.2.2.1 AUD_AET_ACL_DELETE_DEF_FILE

This event will be encountered only if { POSIX_ACL} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_ACL_DELETE_DEF_FILE event shall return aud_info_t structures
for the following event-specific items, with aud_info type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME

The Pathname contains the value passed as an argument to the
acl_delete_def file() function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an ACL is reported in the set of object
attributes it shall contain the ACL before the event. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.2 AUD_AET_ACL_SET_FD

This event will be encountered only if { POSIX_ACL} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an AUD_AET_ACL_SET_FD
event shall return aud_info_t structures for the following event-specific items,
with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_INT File desc AUD_FILE_ID
AUD_TYPE_ACL_TYPE ACL type AUD_ACL_TYPE
AUD_TYPE_ACL ACL AUD_ACL

The File desc, ACL type, and ACL contain the values passed as arguments to the
acl_set_fd () function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an ACL is reported in the set of object
attributes it shall contain the ACL before the event. If the call failed due to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 93

397
398
399
400

401

402
403

404
405
406

408
409
410
411

412
413

414
415
416
417
418
419
420

421

422
423
424

426
427

428
429

430

431
432
433
434
435
436
437

94

access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.3 AUD_AET_ACL_SET_FILE

This event will be encountered only if { POSIX_ACL} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_ACL_SET_FILE event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_ACL_TYPE ACL type AUD_ACL_TYPE
AUD_TYPE_ACL ACL AUD_ACL

The Pathname, ACL type, and ACL contain the values passed as arguments to
the acl_set_file() function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an ACL is reported in the set of object
attributes it shall contain the ACL before the event. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.4 AUD_AET_AUD_SWITCH

Calls on aud_get_event_info() for the audit record of an
AUD_AET_AUD_SWITCH event shall return aud_info_t structures for the follow-
ing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_AUD_STATE Audit state AUD_AUDIT STATE

The Audit state contains the value passed as an argument to the aud_switch()
function: AUD_STATE_ON, AUD_STATE_OFF or AUD_STATE_QUERY.

24.2.2.5 AUD_AET_AUD_WRITE

Calls on aud_get_event info() for the audit record of an AUD_AET_AUD_WRITE
event are not required to report any event-specific data. This event is required to
be reportable only if an attempt to use aud_write(), to write a record to the sys-
tem audit log, fails (e.g. due to lack of appropriate privilege). The header of the
record shall give details of the attempt to use aud_write(), and the set of subject
attributes shall relate to the caller of aud write(); that is, the record is not
required to contain data from the record that the application tried to write to the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

438

439

440
441

442
443
444

448
447
448

449
450

451
452
453
454
455
456
457

458

459
460

461
462
463

463
466
467

468
469

470
471
472
473
474
475
476

system audit log.

24.2.2.6 AUD_AET_CAP_SET_FD

This event will be encountered only if { POSIX_CAP} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an AUD_AET CAP_SET FD
event shall return aud_info_t structures for the following event-specific items,
with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_INT File desc AUD_FILE_ID
AUD_TYPE_CAP Capability state =~AUD_CAP

The File desc and Capability state contain the values passed as arguments to the
cap_set_fd () function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if a file capability state is reported in the set
of object attributes it shall contain the file capability state before the event. If the
call failed due to access controls, and a set of object attributes is still available
from the record, it shall describe the object at which the failure occurred. Other-
wise it is unspecified whether a set of object attributes is available, or what object
is defined by such a set.

24.2.2.7 AUD_AET_CAP_SET_FILE

This event will be encountered only if { POSIX_CAP} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_CAP_SET _FILE event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD TYPE_CAP Capability state =~ AUD_CAP

The Pathname and Capability state contain the values passed as arguments to the
cap_set_file() function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected. If a file capability state is reported in the
set of object attributes it shall contain the file capability state before the event. If
the call failed due to access controls, and a set of object attributes is still available
from the record, it shall describe the object at which the failure occurred. Other-
wise it is unspecified whether a set of object attributes is available, or what object
is defined by such a set.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 95

4717

478
479

480
481
482

483
485

486
487
488
489

490

491
492
493

494
496

497

498

499
500
501

508
504
505

506
507

508
509
510
511
512
513
514

96

24.2.2.8 AUD_AET_CAP_SET_PROC

This event will be encountered only if { POSIX_CAP} was defined when the audit|
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_CAP_SET PROC event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_CAP Capability state = AUD_CAP

The Capability state records the value passed as an argument to the
cap_set_proc() function. If a capability state is reported in the set of subject attri-
butes in the record, this shall record the process capability state of the process
before the event.

24.2.2.9 AUD_AET_CHDIR

Calls on aud_get_event_info() for the audit record of an AUD_AET_CHDIR event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME

The Pathname contains the value passed as an argument to the chdir() function.

24.2.2.10 AUD_AET_CHMOD

Calls on aud_get_event_info() for the audit record of an AUD_AET _CHMOD event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_MODE Mode AUD_MODE

The Pathname and Mode contain the values passed as arguments to the chmod()
function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if a mode is reported in the set of object
attributes it shall contain the mode before the event. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

515

516
517
518

526
521
522
523

524
525

526
527
528
529
530
531
532

533

534
535
536

588
539
540
541

542
543

544
545
546
547
548

549

550
551
552

554
555
556

24.2.2.11 AUD_AET_CHOWN

Calls on aud_get _event _info() for the audit record of an AUD_AET_CHOWN event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_UID Owner AUD_UID
AUD_TYPE_GID Group AUD_GID

The Pathname, Owner, and Group contain the values passed as arguments to the
chown () function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an owner and group are reported in the
set of object attributes they shall contain the object owner and group before the
event. If the call failed due to access controls, and a set of object attributes is still
available from the record, it shall describe the object at which the failure
occurred. Otherwise it is unspecified whether a set of object attributes is avail-
able, or what object is defined by such a set.

24.2.2.12 AUD_AET_CREAT

Calls on aud_get _event info() for the audit record of an AUD_AET CREAT event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_MODE Mode AUD_MODE
AUD TYPE INT Return value (file descriptor) AUD_RETURN_ID

The Pathname and Mode contain the values passed as arguments to the creat()
function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object created. If the call failed due to access controls, and
a set of object attributes is still available from the record, it shall describe the
object at which the failure occurred. Otherwise it is unspecified whether a set of
object attributes is available, or what object is defined by such a set.

24.2.2.13 AUD_AET_DUP

Calls on aud_get event info() for the audit record of an AUD_AET_DUP event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id

AUD_TYPE_INT File descriptor AUD FILE ID
AUD_TYPE_INT Return value (file descriptor) @AUD_RETURN_ID

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 97

557
558

559
560

561

562
563
564

566
567
568
569
570
571
572
573

574
575

576

577
578
579
580

581
582
583
584
585
586

587
588
589
590
591

592
593
594
595
596
597
598

98

This event is recorded for any of the functions dup (), dup2(), or fentl() with com-
mand F' DUPFD.

The File descriptor contains the value passed as the first argument to the func-

tion.

24.2.2.14 AUD_AET_EXEC

Calls on aud_get_event_info() for the audit record of an AUD_AET_EXEC event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_STRING_ARRAY Command-args AUD_CMD_ARGS

(Records arg0...argn)
AUD_TYPE_STRING_ARRAY Env_args (Records envp) AUD_ENVP

AUD_TYPE_UID Effective UID AUD_UID_ID
AUD_TYPE_GID Effective GID AUD_GID_ID
AUD_TYPE_CAP Process capability state AUD_CAP

This event is recorded for any of the functions exec(), execl(), execlp(), execuv(),
execup (), execle(), or execve().

The Pathname contains the value passed as an argument to the function.

An implementation may choose not to report the value of Command_args. If this
is the case, or the arrays pointed to by the argument contained any invalid
pointers, the aud_get_event_info() function shall return an aud_info_t with a zero
aud_info_length member.

For calls other than execle() and execve(), the aud_get _event info() function may
return an aud_info_t with a zero aud_info_length member for Env_args. For exe-
cle() and execve() an implementation may choose not to report the value of
Env_args. If this is the case, or the arrays pointed to by the arguments contained
any invalid pointers, the aud_get_event_info() function shall return an aud_info_t
with a zero aud_info_length member.

The Effective UID and GID are those in effect after the call to exec(). The values
previous to the call to exec() are reportable in the record’s subject attributes. The
aud_info_length member of the aud_info_t reporting these values may be zero
length if the effective UID and GID of the process are the same before and after
the exec().

If {_ POSIX_CAP} was in effect when the record was generated, then the process
capability state in the event-specific data shall record the state at the end of the
call, and if a process capability state is reported in the subject attributes in the
audit record, it shall be that at the start of the call. If { POSIX_CAP} was not in
effect when the record was generated, the aud_get_event_info() function shall
return an aud_info_t with a zero aud_info_length member for the process capabil-
ity state.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

599
600
601
602
603

604

605
606
607

608
610

611

612

613
614
615

616
618

619
620
621
622
623
624

625

626
627

628
629
630

682
633
634

635
636

637
638
639

If the call succeeded a set of object attributes shall also be available from the
record, describing the object executed. If the call failed due to access controls, and
a set of object attributes is still available from the record, it shall describe the
object at which the failure occurred. Otherwise it is unspecified whether a set of
object attributes is available, or what object is defined by such a set.

24.2.2.15 AUD_AET_EXIT

Calls on aud_get_event_info() for the audit record of an AUD_AET_EXIT event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_INT Exit code AUD_EXIT_CODE

The Exit code contains the value passed as an argument to the _exit() function.

24.2.2.16 AUD_AET_FORK

Calls on aud_get_event_info() for the audit record of an AUD_AET_FORK event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_PID Returnvalue AUD_RETURN_ID

The audit record shall be reportable on behalf of the parent, when the Return
value shall be the child’s process ID, thus the parent’s process ID is recorded in
the record header, and the child’s is the return value. A conforming implementa-
tion may also report a record for the child process; in this case the Return value
shall be zero. No events that are reported for the child shall be reported before
the parent’s AUD_AET FORK record.

24.2.2.17 AUD_AET_INF_SET_FD

This event will be encountered only if { POSIX_INF} was defined when the audit |
log was generated.

Calls on aud_get_event_info() for the audit record of an AUD_AET_INF_SET_FD
event shall return aud_info_t structures for the following event-specific items,
with aud_info type members as specified:

Type Description item_id
AUD_TYPE_INT File desc AUD_FILE_ID
AUD_TYPE_INF Label AUD_INF_LBL

The File desc and Label contain the values passed as arguments to the
inf_set_fd() function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an information label is reported in the set
of object attributes it shall contain the information label before the event. If the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 99

640
641
642
643

644

645
646

647
648
649

659
652
653

654
655

656
657
658
659
660
661
662

663

664
665

666
667
668

666
671

672
673
674

675

676
677
678

100

call failed due to access controls, and a set of object attributes is still available
from the record, it shall describe the object at which the failure occurred. Other-
wise it is unspecified whether a set of object attributes is available, or what object
is defined by such a set.

24.2.2.18 AUD_AET_INF_SET_FILE

This event will be encountered only if { POSIX_INF} was defined when the audit |
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_INF_SET_FILE event shall return aud_info t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_INF Label AUD_INF_LBL

The Pathname and Label contain the values passed as arguments to the
inf set_file() function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if an information label is reported in the set
of object attributes it shall contain the information label before the event. If the
call failed due to access controls, and a set of object attributes is still available
from the record, it shall describe the object at which the failure occurred. Other-
wise it is unspecified whether a set of object attributes is available, or what object
is defined by such a set.

24.2.2.19 AUD_AET_INF_SET_PROC

This event will be encountered only if { POSIX_INF} was defined when the audit |
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_INF_SET_PROC event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info type members as specified:

Type Description item_id
AUD_TYPE_INF Label AUD_INF_LBL

The Label contains the value passed as an argument to the inf set_proc() func-
tion. If an information label is reported in the record header it shall contain the
process’s information label before the event.

24.2.2.20 AUD_AET_KILL

Calls on aud_get_event_info() for the audit record of an AUD_AET_KILL event
shall return aud_info t structures for the following event-specific items, with
aud_info_type members as specified:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

688
681
682

683
684

685
686
687
688
689

699
692

693
694
695

696

697
698
699

700
702
703

704
705
706

707
708
709
710
711
712

713

714
715

716
717
718

Type Description item_id
AUD_TYPE_PID Pid AUD_PID
AUD_TYPE_INT Signal Number AUD_SIG

The Pid and Signal Number shall record the values passed as arguments to the
kill() function.

If the call succeeded, or if the call failed because of access control restrictions, sets
of object attributes shall also be available from the record, one describing each
object to which the signal was directed. In addition, following the content nor-
mally required from each set of object attributes, there shall also be available
from each an item:

Type Description item_id
AUD TYPE _AUD STATUS The audit status of the event AUD_STATUS

recording whether the signal was successfully sent to that object. If the call failed
for reasons other than access control, it is not defined whether any sets of object
attributes are available.

24.2.2.21 AUD_AET_LINK

Calls on aud_get_event_info() for the audit record of an AUD_AET_LINK event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathl AUD_PATHNAME
AUD_TYPE_STRING Path2 AUD_LINKNAME

The Path1 and Path2 contain the values passed as arguments to the link() func-
tion. Pathl contains the pathname of the existing file, Path2 contains the path-
name of the new directory entry to be created.

If the call succeeded a set of object attributes shall also be available from the
record, describing the file to which the link is made. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.22 AUD_AET_MAC_SET_FD

This event will be encountered only if { POSIX_MAC} was defined when the audit]
log was generated.

Calls on aud_get_event _info() for the audit record of an AUD_AET_MAC_SET_FD
event shall return aud_info_t structures for the following event-specific items,
with aud_info_type members as specified:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 101

720
721
722

723
724

725
726
727
728
729
730
731

732

733
734

735
736
737

738
740
741

742
743

744
745
746
747
748
749
750

751

752
753

754
755
756

758
759

760
761

102

Type Description item_id
AUD_TYPE_INT File desc AUD_FILE_ID
AUD_TYPE_MAC Label AUD_MAC_LBL

The File desc and Label contain the values passed as arguments to the
mac_set_fd() call.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if a MAC label is reported in the set of object
attributes it shall contain the MAC label before the event. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.23 AUD_AET_MAC_SET_FILE

This event will be encountered only if { POSIX_MAC} was defined when the audit]
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET MAC_SET_FILE event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_MAC Label AUD_MAC_LBL

The Pathname and Label contain the values passed as arguments to the
mac_set_file() call.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object affected; if a MAC label is reported in the set of object
attributes it shall contain the MAC label before the event. If the call failed due to
access controls, and a set of object attributes is still available from the record, it
shall describe the object at which the failure occurred. Otherwise it is unspecified
whether a set of object attributes is available, or what object is defined by such a
set.

24.2.2.24 AUD_AET_MAC_SET_PROC

This event will be encountered only if { POSIX_MAC} was defined when the audit]
log was generated.

Calls on aud_get_event_info() for the audit record of an
AUD_AET_MAC_SET_PROC event shall return aud_info_t structures for the fol-
lowing event-specific items, with aud_info_type members as specified:

Type Description item_id
AUD _TYPE_MAC Label AUD_MAC_LBL

The Label contains the value passed as an argument to the mac_set_proc() func-
tion. If a MAC label is reported in the record header it shall contain the process

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 Audit

762

763

764
765
766

768
769
770

771
772

773
774
775
776
77

778

779
780
781

783
784
785

786
787

788
789
790
791
792

793

794
795
796

798
799
800
801
802

MAUC label before the event.

24.2.2.25 AUD_AET_MKDIR

Calls on aud_get _event info() for the audit record of an AUD_AET_MKDIR event
shall return aud_info_t structures for the following event-specific items, with
aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_MODE Mode AUD_MODE

The Pathname and Mode contain the values passed as arguments to the mkdir()
function.

If the call succeeded a set of object attributes shall also be available from the
record, describing the object created. If the call failed due to access controls, and
a set of object attributes is still available from the record, it shall describe the
object at which the failure occurred. Otherwise it is unspecified whether a set of
object attributes is available, or what object is defined by such a set.

24.2.2.26 AUD_AET_MKFIFO

Calls on aud_get event info() for the audit record of an AUD_AET_MKFIFO
event shall return aud_info t structures for the following event-specific items,
with aud_info_type members as specified:

Type Description item_id
AUD_TYPE_STRING Pathname AUD_PATHNAME
AUD_TYPE_MODE Mode AUD_MODE

The Pathname and Mode contain the values passed as arguments to the mkfifo()
function.

If the call succeeded a set of object attributes shall also be available from