PSSG Draft 17

STANDARDS PROJECT

Draft Standard for Information Technology—
Portable Operating System Interface (POSIX)—
Part 2:

Shell and Utilities— Amendment #:
Protection and Control Interfaces

Sponsor

Technical Committee on Operating Systems
and Application Environments
of the
IEEE Computer Society

Work Item Number:
JTC1 22.43

Abstract: IEEE Std 1003.2¢ is an amendment to IEEE Std 1003.2-1992. It
defines security utilities to open systems for access control lists, separation of
privilege (capabilities), mandatory access control, and information label mechan-
isms.

Keywords: access control lists, application portability, information labels, man-
datory access control, capability, open systems, operating systems, portable appli-
cation, POSIX, POSIX.2, privilege, security, user portability

PSSG /D17
October 1997

Copyright [0 1997 by the Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street,
New York, NY 10017, USA
All rights reserved.

%

ISBN-xxxXX-XXXXX-X

Library of Congress Catalog Number 90-xxxxx

IEEE Draft P1003.2¢c, Copyright O IEEE.
All Rights Reserved by IEEE.
The IEEE disclaims any responsibility or liability resulting from the
placement and use of this document.
This copyrighted document may be downloaded for personal use by one (1)
individual user.
No further copying or distribution is permitted without the express written
permission or an appropriate license from the IEEE.

This is a withdrawn IEEE Standards Draft.

Permission is hereby granted for IEEE Standards Committee participants to
reproduce this document for purposes of IEEE standardization activities.
Permission is also granted for member bodies and technical committees of

ISO and IEC to reproduce this document for purposes of developing a
national position.

Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this
document for these or other uses, must contact the IEEE Standards

Department for the appropriate license.
Use of information contained in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions

445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

October 1997 XXXXXXX

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Foreword

NOTE: This foreword is not a normative part of the standard and is included for informative pur-
poses only.

The purpose of this standard is to define a standard interface and environment
for Computer Operating Systems that require a secure environment. The stan-
dard is intended for system implementors and application software developers. It
is an extension to the IEEE P1003.2 (POSIX.2).

Organization of the Standard

The standard is divided into several parts:
— Revisions to the General Section (Section 1)
— Revisions to Terminology and General Requirements (Section 2)
— Revisions to Execution Environment Utilities (Section 4)
— Revisions to User Portability Utilities (Section 5)
— Access Control Lists (Section 8)

— Capability (Section 9)

— Mandatory Access Control (Section 10)

— Information Labeling (Section 11)

— Annex E - Revisions to Rationale and Notes
— Annex I - Ballot Instructions

Changes to the draft since the previous ballot are indicated by one of four marks
in the right-hand margin. These change marks should aid the balloter in deter-
mining what has changed and therefore what is candidate text for comments and
objections during this ballot. A bar ("|") indicates changes to the line between
drafts 15 and 16. A plus ("+") indicates that text has been added in draft 16. A
minus ("-") indicates that text present in that location in draft 15 has been deleted
in draft 16. A percent ("%") indicates that a change was made at that location in
draft 17.

Conformance Measurement

In publishing this standard, both IEEE and the security working group simply
intend to provide a yardstick against which various operating system implemen-
tations can be measured for conformance. It is not the intent of either IEEE or the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

vi

%
%

%
%
%
%

%
%

security working group to measure or rate any products, to reward or sanction
any vendors of products for conformance or lack of conformance to this standard,
or to attempt to enforce this standard by these or any other means. The responsi-
bility for determining the degree of conformance or lack thereof with this stan-
dard rests solely with the individual who is evaluating the product claiming to be
in conformance with this standard.

Extensions and Supplements to This Standard

Activities to extend this standard to address additional requirements can be anti-
cipated in the future. This is an outline of how these extensions will be incor-
porated, and also how users of this document can keep track of that status.
Extensions are approved as “Supplements” to this document, following the IEEE
Standards Procedures. Approved Supplements are published separately and are
obtained from the IEEE with orders for this document until the full document is
reprinted and such supplements are incorporated in their proper positions.

If you have any questions regarding this or other POSIX documents, you may con-
tact the the IEEE Standards Office by calling IEEE at:

1 (800) 678-IEEE - from within the US
1+ (908) 981-1393 from outside the US

to determine what supplements have been published. Published supplements are
available for a modest fee.

Supplements are numbered in the same format as the main document with
unique positions as either subsections or main sections. A supplement may
include new subsections in various sections of the main document as well as new
main sections. Supplements may include new sections in already approved sup-
plements. However, the overall numbering shall be unique so that two supple-
ments only use the same numbers when one replaces the other. Supplements
may contain either required or optional facilities. Supplements may add addi-
tional conformance requirements (see POSIX.2, Implementation Conformance,
1.3) defining new classes of conforming systems or applications.

It is desirable, but perhaps not avoidable, that supplements do not change the
functionality of the already defined facilities. Supplements are not used to pro-
vide a general update of the standard. A general update of the standard is done
through the review procedure as specified by the IEEE.

If you have interest in participating in Portable Applications Standards Commit-
tee (PASC) working groups please send your name, address and phone number to
the Secretary, IEEE Standards Board, Institute of Electrical and Electronics
Engineers, Inc., P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, and
ask to have your request forwarded to the chairperson of the appropriate PASC
working group. If you have interest in participating in this work at the interna-
tional level, contact your ISO/IEC national body.

Please report typographical errors and editorial changes for this draft standard
directly to:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

vii

Casey Schaufler

Silicon Graphics

2011 North Shoreline Blvd.

P.O. Box 7311

Mountain View, CA 94039-7311

(415) 933-1634 (voice)

(415) 962-8404 (fax)

casey@sgi.com
SchauflereDOCKMASTER.NCSC.MIL

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

viii

IEEE Std 1003.2c was prepared by the security Working Group, sponsored by the
Portable Applications Standards Committee (PASC) of the IEEE Computer

Standards Subcommaittee for PASC

1003.6 Working Group Officials

Society.
Chair: Lowell Johnson
Treasurer: Barry Needham
Secretary: Charles Severence
Chair: Lynne Ambuel
Technical Editor:

The following people have participated in the security Working Group.

Lynne Ambuel
Martin Bailey
Lowell Bogard
Matthew Brisse
Mark Carson
Roland Clouse
Anthony D’Alessandro
Ana Maria De Alvare’
Maryland R. Edwards
Jeremy Epstein
David Ferbrache
Morrie Gasser
Henry Hall

Rand Hoven

Paul A. Karger
Yvon Klein

Steven LaFountain
Warren E. Loper
Richard E. Mcnaney
Jim Moseman

Rose Odonnell
Gordon Parry

David Rogers

Craig Rubin

Mark Schaffer
Larry Scott

Rick Siebenaler
Dennis Steinauer
Doug Steves

Charlie Testa
Catherine West

Casey Schaufler

Jeanne Baccash
John-Olaf Bauner
Kevin Brady
Joseph Bulger
Charisse Castagnoli
Peter E. Cordsen
Daniel D. Daugherty
Terence Dowling
Ron Elliott

Frank Fadden
Carl Freeman
Gerald B. Green
Craig Heath
Chris Hughes
Joseph Keenan
Andy Kochis
Danielle Lahmani
Jeff Mainville
Chris Milsom
Kevin V. Murphy
Gary Oing

Jeff Picciotto
Peter L. Rosencrantz
Roman Saucedo
Casey Schaufler
Eric Shaffer

Alan Silverstein
Chris Steinbroner
Steve Sutton

Jeff Tofano

Ken Witte

Lee Badger

D. Elliott Bell
Joe Brame

Lisa Carnahan
Paul Close

Janet Cugini
Manilal Daya
Jack Dwyer
Lloyd English
Kevin Fall

Mark Funkenhauser
John Griffith
Tom Houghton
Howard Israel
Jerry Keselman
Steve Kramer
Jason Levitt
Doug Mansur
Mark Modig
Greg Nuss

C. Larry Parker
Michael Ressler
Shawn Rovansek
Stuart Schaeffer
Michael Schmitz
Olin Sibert

Jon Spencer
Michael Steuerwalt
W. Lee Terrell
Brian Weis

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

X

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Information technology—Portable operating
1 system interface for computer environments

2 Section 1: Revisions to the General Section
3 [0 1.1 Scope This scope is to be revised and integrated appropriately into the %
4 scope when POSIX.2c is approved: %
5 This standard, P1003.2¢/D17: October 1997 (POSIX.2c¢), defines four indepen- |
6 dent, security-related, optional sets of utilities. These interfaces will provide %
7 changes and additions to ISO/IEC 9945-2 (Shell and Utilities) as they are pub-
8 lished and approved. The sets of utilities for implementation are:
9 (1) Access Control Lists (ACL)
10 (2) Capability
11 (3) Mandatory Access Controls (MAC)
12 (4) Information Labeling (IL)
13 Each option defines new utilities, as well as security-related constraints for the

14 functions and utilities defined by other POSIX standards.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1 Revisions to the General Section 1

15 0O 1.2 Normative References (POSIX.2: line 92) Modify normative reference 8%
16 (IEEE Std 1003.1-1990) to refer to POSIX.1 as amended by P1003. 1e. %

17 0O 1.3.1.3 Conforming Implementation Options (POSIX.2: line 172) Insert

18 the following options in alphabetic order:

19 {POSIX2_ACL} The system supports the Access Control List Utilities |
20 Option (see Section 8). |
21 {POSIX2_CAP} The system supports the Capability Utilities Option (see %
22 Section 9).

23 {POSIX2_INF} The system supports the Information Label Utilities
24 Option (see Section 11). %
25 {POSIX2_MAC} The system supports the Mandatory Access Control Utili-
26 ties Option (see Section 10). %

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 1 Revisions to the General Section

Tk W

0 3

10
11

12
13
14

15
16
17

18
19

20
21

22
23
24
25

Section 2: Revisions to Terminology and General Requirements

0 2.2 Definitions

0 2.2.2 General Terms Delete 2.2.2.66 file access permissions Modify the con-
tents of subclause 2.2.2, General Terms, to add or modify the indicated
definitions in the correct sorted order [disregarding the subclause numbers
shown here.]

2.2.2.1 access ACL: An access control list (ACL) which is used in making discre-
tionary access control decisions for an object. [POSIX.1e]

2.2.2.2 access control: The prevention of unauthorized access to objects by
processes and, conversely, the permitting of authorized access to objects by
processes. [POSIX.1e]

2.2.2.3 access control list (ACL): A discretionary access control entity associ-
ated with an object, consisting of a list of entries where each entry is a user
identifier coupled with a set of access permissions. [POSIX.1e] |

2.2.2.4 capability: An attribute of a process that determines whether or not a
process has the appropriate privilege to perform a specific POSIX.1 action where
appropriate privilege is required. [POSIX.1e] -

2.2.2.5 capability state: A grouping of all of the flags defined by an implemen-
tation for a capability. [POSIX.1e] |

2.2,2.6 default ACL: An ACL which is used in determining the initial discre-
tionary access control information for objects created. [POSIX.1e] -

2.2,2,7 discretionary access control (DAC): A means of determining and
enforcing access to objects based on the identity of the user, process, and/or
groups to which the objects belong. The controls are discretionary in the sense
that a subject with a certain access permission is capable of passing that

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 3

26

27
28
29
30

31

32
33
34
35

36
37

38
39
40
41

42
43

44
45

46
47
48
49

50
51
52

53

54
55

56
57

58
59

permission (perhaps indirectly) on to other subjects. [POSIX.1e] |

2.2.2.8 file access controls: One standard file access control mechanism based |
on file permission bits and two optional file access control mechanisms, based on |
access control lists and mandatory access control labels, are defined by this stan- |
dard. |

2.2.2.8.1 file access permissions |

This standard defines discretionary file access control on the basis of file permis- |
sion bits as described below. The additional provision, access control lists, applies|
only if { POSIX2_ACL} is defined. The additional provision, mandatory access |
control, applies only if { POSIX2_MAC]} is defined.

The file permission bits of a file contain read, write, and execute/search permis-
sions for a file owner class, file group class, and file other class. -

Implementations may provide additional or alternate file access control mechan-
isms, or both. An additional access control mechanism shall only further restrict
the access permissions defined by the file access control mechanisms described in
this section. An alternate access control mechanism shall:

(1) Specify file permission bits for the file owner class, file group class, and
file other class corresponding to the access permissions. -

(2) Be enabled only by explicit user action, on a per user basis by the file
owner or a user with the appropriate privilege.

(3) Be disabled for a file after the file permission bits are changed for that
file with the chnod utility. The disabling of the alternate mechanism |
need not disable any additional mechanisms defined by an implementa- |
tion.

Whenever a process requests file access permission for read, write, or
execute/search, if no additional mechanism denies access, access is determined as
follows:

If the process possesses appropriate privilege:

— If read, write, or directory search permission is requested, access is
granted.

— If execute permission is requested, access is granted if execute permission
is granted to at least one user by the file access permission bits.

Otherwise: Access is granted on the basis of the evaluation of the file per-
mission bits.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

60 0O 2.2.2.8.2 access control lists: Add this as a new concept. %

61 The {_POSIX2_ACL} option provides an additional access control mechanism

62 by providing file access control based upon an access control list mechanism.

63 The additional provisions of this subclause apply only if {_ POSIX2_ACL} is |
64 defined. The interaction between file permission bits and the ACL mechanism

65 is defined such that a correspondence is maintained between them. The ACL
66 mechanism therefore enhances access control based upon the file permission
67 bits.

68 An ACL entry shall support at a minimum read, write, and execute/search per-

69 missions.

70 An ACL is set at file creation time. An additional default ACL can be associ- -
71 ated with a directory; this is used in setting the ACL of any object created in

72 that directory. -
73 Each access mode requested shall be individually evaluated against the ACL.

74 A process is granted discretionary access to a file only if all individual
75 requested modes of access are granted or the process possesses appropriate
76 privileges.

77 If the process possesses appropriate privilege:

78 — Ifread, write or directory search permission is requested, access is granted.
79 — If execute permission is requested, access is granted if execute permission
80 is specified in at least one ACL entry.

81 Otherwise, access is granted on the basis of the evaluation of the ACL per-
82 missions. -
83 O 2.2.2.8.3 mandatory access control: Add this as a new concept. %

84 The { POSIX2 MAC]} option provides utilities to an additional access control |
85 mechanism based on the assignment of MAC labels to subjects and objects.
86 The provisions of this subclause only apply if {_POSIX2_MAC} is defined. |

87 The MAC mechanism permits or restricts access to an object by a process
88 based on a comparison of the MAC label of the process to the MAC label of the
89 object. A process can read an object if the process’s MAC label dominates the
90 object’s MAC label, and write an object if the process’s MAC label is dominated
91 by the object’s MAC label. However, an implementation may impose further
92 restrictions, permitting write access to objects only by processes with a MAC |
93 label equivalent to that of the object. This standard does not define the domi-
94 nance and equivalence relationships, and thus does not define a particular

95 MAC policy.

96 MAC read access to an object by a process requires that the process’s MAC
97 label dominate the object’s MAC label or that the process possess appropriate
98 privilege.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 5

99
100
101

102

103
104
105
106
107
108

109

110
111
112
113

114
115

116
117

118
119
120

121
122
123

124
125
126
127

128
129
130
131

MAC write access to an object by a process requires that the process’s MAC
label be dominated by the object’s MAC label or that the process possess
appropriate privilege.

Execute/search file access requires MAC read access to the file.

The MAC label of an object (including a process object) is set at creation time
to dominate the MAC label of the creating process. Although this allows crea-
tion of upgraded objects, this standard provides only interfaces which will
create objects with MAC labels equivalent to that of the creating process.
However, interfaces are provided to allow an appropriately privileged process
to upgrade existing objects.

0 2.2.2.8.4 evaluation of file access: Add this as a new concept. -

Whenever a process requests file access, if no alternate access control mechan-
ism applies, then access shall be granted only if all the applicable POSIX.1
access control mechanisms and any additional access control mechanisms
grant the access.

2.2.2.9 dominate: An implementation-defined relation between the values of
MAC labels or implementation labels. [POSIX.1e] -

2.2.2.10 file group class: The property of a file indicating access permissions
for a process related to the process’s group identification.

A process is in the file group class of a file if the process is not in the file owner
class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. [POSIX.1e]

2.2.2.11 information label: The representation of a security attribute of a sub-
ject or object that applies to the data contained in that subject or object and is not
used for mandatory access control. [POSIX.1e]

2.2.2.12 information label floating: The operation whereby one information
label is combined with another information label. The specific algorithm used to

define the result of a combination of two labels is implementation defined.
[POSIX.1e]

2.2.2.13 MAC label: The representation of a security attribute of a subject or
object which represents the sensitivity of the subject or object and is used for
mandatory access control decisions. The contents of MAC labels are
implementation-defined. [POSIX.1e]

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

132
133
134
135
136

137
138

139
140
141
142

143
144
145

146
147

148

149

150

151

152
153

154
155
156
157

2.2.2,14 mandatory access control (MAC): A means of determining and
enforcing access to objects based on an implementation-defined security policy
using MAC labels and the use of the implementation-defined dominate operator.
The determinations are mandatory in the sense that that are always imposed by
the system. [POSIX.le]

2.2.2.15 minimum ACL: An ACL that contains only the required ACL entries.
[POSIX.1e]

2.2.2.16 principle of least privilege: A security design principle that states
that a process or program be granted only those privileges necessary to accom-
plish its legitimate function, and only for the time that such privileges are actu-
ally required. [POSIX.1e]

2.2.2.17 required ACL entries: The three ACL entries that must exist in every
valid ACL. These entries are exactly one entry each for the owning user, the own-
ing group, and other users not specifically enumerated in the ACL.

2.2.2.18 security: The set of measures defined within a system as necessary to
adequately protect the information to be processed by the system. [POSIX.1e] -

0 2.3 Built-In Utilities Add the following entry to Table 2-3.

getpcap

0 2.9 Dependencies on Other Standards

0 2.9.1 Features Inherited From POSIX.1

0 2.9.1.4 File Read, Write, and Creation (POSIX.2: line 3395) Replace line
3395 in Section 2.9.1.4 with the following:

(3) If {_POSIX_ACL} is in effect and {_POSIX_ACL_EXTENDED} is in
effect for the directory that will contain the new file, the ACL shall be
set as described in POSIX.1 {8}, section 23.1.4; otherwise the file per-
mission bits are set to:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 7

%

158 0O 2.9.1.4 File Read, Write, and Creation (POSIX.2: line 3403) Insert the fol-

159

160
161
162
163

164
165
166
167
168

169
170
171

172
173

174
175
176
177
178
179
180
181
182
183

184
185

lowing after line 3403:

(7) If {_POSIX_CAP} is in effect and {_POSIX_CAP_PRESENT} is in
effect for the directory that will contain the new file, the permitted,
inheritable and effective capability flags for all capabilities defined in
the implementation shall be cleared.

(8) If { POSIX_INF} is in effect and {_POSIX_INF_PRESENT} is in effect
for the directory that will contain the new file, the information label of
the file shall be set to an implementation-defined value which should
be equivalent to the value returned by the POSIX.1 {8} inf default()
function.

(9) If { POSIX_MAC} is in effect and { POSIX_MAC_PRESENT} is in
effect for the directory that will contain the new file, the MAC label of
the file shall be set to the MAC label of the creating process.

0 2.9.3 Concepts Derived from the Security Standard Add this as a new

section.

Some of the standard utilities specify that a utility performs actions equivalent
to a POSIX.1 function. In POSIX.1e, if {_ POSIX_CAP} is in effect, many func-
tions are associated with specific capability overrides. The behavior of these
functions is different between processes whose effective flag is set for the
specific capability and processes whose effective flag is clear for the specific
capability. Specific utility actions with respect to capabilities are unspecified
for utilities in POSIX.2. The concept of user authorization to invoke privileged
utility functions is left unspecified in POSIX.1e, and therefore utility enforce-
ment of the authorization mechanism must remain implementation-defined in
POSIX.2c.

0 2.13.2 Symbolic Constants for Portability Specifications (POSIX.2: line

4238) Insert the following entries in alphabetical order in Table 2-19:

186 Table 2-19 - Optional Facility Configuration Values

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

%

188
199
190
191
198
194
195

200
198
199

205
202
203
204

Name

Description

{POSIX2_ACL}

{POSIX2_CAP}

{POSIX2_INF}

{POSIX2_MAC}

The system supports the
Access Control List Utilities
Option (see Section 8).

The system supports the
Capability Utilities Option
(see Section 9).

The system supports the
Information Label Utilities
Option (see Section 11).

The system supports the
Mandatory Access Control
Utilities Option (see Section
10).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements

%

%

%

B~ W DN

o Ot

10
11

12
13

14
15
16

17
18

19
20
21
22
23
24

25
26
27

Section 4: Revisions to Execution Environment Utilities

0 4.13.2cp — Copy files — Description (POSIX.2:line 2659) Change %
"POSIX.1 {8}" to "POSIX.1 as amended by POSIX.1e {8}" on line 2659 in Sec- %
tion 4.13.2. %

0 4.13.3 cp — Copy files — Description (POSIX.2: line 2708) Replace line
2708 in Section 4.13.3 with the following:

(3)
4)

The file permission bits and the S_ISUID and S_ISGID bits. |

If { POSIX_ACL} is defined and {_POSIX ACL_EXTENDED} is in |
effect for the destination file, the ACLs. If this fails for any reason, cp|
shall write a diagnostic message to the standard error, do nothing |
more with the current source_file and go on with any remaining files.

0 4.39.21s — List directory contents — Description (POSIX.2: line 6024)
Insert the following sentence after line 6024 in Section 4.39.6.1:

If { POSIX_ACL} is defined and {_ POSIX_ACL_EXTENDED} is in effect for |
the file, then the <optional alternate access method flag> shall be a plus sign

(“+”)'

0 4.43.2 mv — Move files — Description (POSIX.2: line 7129) Insert the fol-|
lowing entries after line 7129 in section 4.43.2: |

(6)

(7

If { POSIX_ACL} is defined and {_POSIX ACL_EXTENDED} is in |
effect for dest file, then the ACLs associated with the dest file shall |
reflect the ACLs associated with the source_file. If this fails for any |
reason, Nv shall write a diagnostic message to the standard error, do |
nothing more with the current source_file and go on with any remain- |
ing files. |

If {_ POSIX_MAC} is defined and {_POSIX MAC_PRESENT} is in |
effect for dest_file, then the MAC label of dest_file shall be set to the
MAC label of the invoking process. |

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

4 Revisions to Execution Environment Utilities 11

28
29
30

31
32
33

34
35
36

37
38
39
40
41
42

43
44

45
46
47

12

U

(8) If { POSIX_INF} is defined, and {_POSIX_INF_PRESENT} is in effect]
for dest_file the information label of dest_file shall dominate the infor-
mation label of the source file. |

(9) If { POSIX_CAP} is defined and {_POSIX_CAP_PRESENT} is in effect|
for dest_file, then all capabilities defined by the implementation shall
be cleared for dest file.

4.48.2 pax — Portable Archive Interchange — Description
(POSIX.2: line 7671) Insert the following text in line 7671 before the word
“access” in section 4.48.2:

access control lists, |

4.48.3 pax — Portable Archive Interchange — Description
(POSIX.2: line 7774) Insert the following after "bits (see 2.2.2.71),” in lines
7774-7775 in section 4.48.3:

and access control lists, |

4.48.3 pax — Portable Archive Interchange — Description
(POSIX.2: line 7780) Insert the following entries after line 7780 in section
4.48.3:

1 Preserve information labels associated with files.
M Preserve mandatory access control labels associated with files.

C Preserve capability state associated with files.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 Revisions to Execution Environment Utilities

1 Section 5: POSIX.2— Revisions to User Portability Utilities

2 0 5.2.2 at — Execute utilities at a later time — Description (POSIX.2: line

3 87) Insert the following after ‘mask,” on line 85 in Section 5.2.2: |

4 ,the process MAC label (if {_POSIX_MAC} is defined), |

5 the process information label (if {_ POSIX_INF} is defined), audit ID |

6 of the parent job (if { POSIX_AUD} is defined), the process’s capability]

7 state (if {_ POSIX_CAP} is defined), |

8 [0 5.5.2 crontab — Schedule periodic background work — Description

9 (POSIX.2: line 489) Insert the following after line 489 in Section 5.5.2:
10 The security attributes of the command executed from the crontab entry shall
11 be set as follows:
12 o If { POSIX _MAC} is defined, a separate crontab entry shall be maintained |
13 for each MAC label at which the user invokes the cront ab utility. The
14 MAC label of the environment shall be the MAC label of the process invok-
15 ing the cr ont ab utility.
16 o If { POSIX INF} is defined, the information label of the environment shall |
17 be the information label of the process invoking the cr ont ab utility.
18 o If { POSIX_AUD} is defined, the audit ID of the environment shall be the |
19 audit ID of the process invoking the cr ont ab utility.
20 o If { POSIX_CAP} is defined, the value of the inheritable capability flags in |
21 the environment shall be implementation-defined.

22 Additional implementation-defined restrictions may be imposed when the periodi-
23 cally scheduled job is executed.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 POSIX.2— Revisions to User Portability Utilities 13

O Ot WIN

10

11

12
13
14
15
16

17

18
19

20
21
22

Section 8: Access Control Lists

This section describes utilities for the retrieval, modification, and manipulation of
access ACLs and default ACLs on specified objects.

Support for the utilities defined in this section is optional but shall be provided by
any implementation claiming conformance to the Access Control List Utilities
Option. Such an implementation shall provide all of the utilities as described in
this section.

8.1 getfacl — Get ACL Information

8.1.1 Synopsis

getfacl [-d] [file..] %

8.1.2 Description

The get facl utility writes discretionary access control information associated
with the specified file(s) to standard output. If the get conf utility indicates that|
{_POSIX_ACL_EXTENDED} is not in effect for a file then the standard discretion-
ary access permissions are interpreted as an ACL containing only the required
ACL entries.

8.1.3 Options

The getfacl utility shall conform to the utility argument syntax guidelines
described in 2.10.2.

-d The operation applies to the default ACL of a directory instead of the
access ACL. An error shall be generated if a default ACL cannot be
associated with file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.1 getfacl — Get ACL Information 15

23 8.1.4 Operands

24 The following operand shall be supported by the implementation:

25 file A pathname of a file whose ACL shall be retrieved. If file is not
26 specified, or a file is specified as “-”, then get f acl shall read a list
27 of pathnames, each terminated by one <newline> character, from the
28 standard input. If a pathname read from standard input contains
29 only a <newline> character, the results are unspecified. -

30 8.1.5 External Influences

31 8.1.5.1 Standard Input

32 If no file operand is specified, or a file is specified as a “~”, then get f acl shall
33 read a list of zero or more pathnames from standard input. Otherwise, standard |
34 input shall not be used.

35 8.1.5.2 Input Files
36 None.

37 8.1.5.3 Environment Variables

38 The following environment variables shall affect the execution of get f acl :

39 LANG This variable shall determine the locale to use for the locale
40 categories when both LC_ALL and the corresponding
41 environment variable (beginning with LLC_) do not specify a
42 locale. See 2.6.

43 LC_ALL This variable shall determine the locale to be used to over-
44 ride any values for locale categories specified by the settings
45 of LANG or any environment variables beginning with LC_.
46 LC_CTYPE This variable shall determine the locale for this interpreta-
47 tion of sequences of bytes of text data as characters (e.g.,
48 single- versus multibyte characters in arguments and stan- |
49 dard input).

50 LC_MESSAGES This variable shall determine the language in which mes- |
51 sages should be written.

52 8.1.5.4 Asynchronous Events
53 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

16 8 Access Control Lists

54

55

56
57
58
59
60

61
62

63
64

65
66

67
68

69
70

71

72

73
74

75
76
77
78
79
80

81
82

83
84

85
86

87
88

8.1.6 External Effects

8.1.6.1 Standard Output

The get f acl utility writes to standard output a header followed by ACL entries

in the form described in 8.1.7. The ACL entries shall be written in the order in %
which they are evaluated when a discretionary access check is performed. If the

—d option is specified and no default ACL is associated with a file, then only the
header shall be written for that file.

The header shall be written in the following format:
"#file:%s\n#owner:%d \n#group:%d\n" ,<filename>,<uid>,<gid> |

Additional implementation-defined lines starting with a number sign (#) charac- -
ter may be added to the header after the lines specified above.

If more than one ACL is written to standard output, an empty line shall be writ-
ten to standard output before each header except the first. %

8.1.6.2 Standard Error

Used only for diagnostic messages.

8.1.6.3 Output Files

None.

8.1.7 Extended Description

The get f acl utility shall write ACL entries in the following form: %
<acl_entry> %
[<acl_entry>] ... %

Each <acl_entry> line shall contain one ACL entry with three required colon- %

separated fields: an ACL entry tag type, an ACL entry qualifier, and the discre- %
tionary access permissions. An implementation may define additional colon- %
separated fields after the required fields. Comments may be included on any %
<acl_entry> line. If a comment starts at the beginning of a line, then the entire %

line shall be interpreted as a comment. %
The first field contains the ACL entry tag type. This standard defines the follow- %
ing ACL entry tag type keywords, one of which shall appear in the first field: %
user A user ACL entry specifies the access granted to either the file %
owner or a specified user. %
group An group ACL entry specifies the access granted to either the file %
owning group or a specified group. %
other An other ACL entry specifies the access granted to any process %
that does not match any user, group, or implementation-defined %

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.1 getfacl — Get ACL Information 17

89

90
91
92

93

94
95

96
97

98
99
100

101

102
103

104
105
106
107

108
109
110
111
112

113
114
115
116
117

118
119
120
121
122

123
124

125
126
127
128

18

ACL entries. %
mask A mask ACL entry specifies the maximum access which can be %
granted by any ACL entry except the user entry for the file owner %
and the ot her entry. %
An implementation may define additional ACL entry types. %
The second field contains the ACL entry qualifier (referred to in the remainder of %
this section as qualifier). This standard defines the following qualifiers: %
uid This qualifier specifies a user name or a user ID number. %
gid This qualifier specifies a group name or a group ID number. %
empty This qualifier specifies that no uid or gid information is to be applied%
to the ACL entry. An empty qualifier shall be represented by an %
empty string or by white space. %
An implementation may define additional qualifiers. %
The third field contains the discretionary access permissions. This standard %
defines the following symbolic discretionary access permissions: %
r Read access %
w Write access %
X Execute/search access %
- No access by this ACL entry. %

The discretionary access permissions field shall contain exactly one each of the %
following characters in the following order: r, w, and X. Each of these may be %
replaced by the “-” character to indicate no access. An implementation may define%
additional characters following the required characters that represent %
implementation-defined permissions. %

A user entry with an empty qualifier shall specify the access granted to the file %
owner. A user entry with a uid qualifier shall specify the access permissions %
granted to the user name matching the uid value. If the uid value does not match %
a user name, then the ACL entry shall specify the access permissions granted to %
the user ID matching the numeric uid value. %

A group entry with an empty qualifier shall specify the access granted to the file %
owning group. A gr oup entry with a gid qualifier shall specify the access permis-%
sions granted to the group name matching the gid value. If the gid value does not %
match a group name, then the ACL entry shall specify the access permissions %
granted to the group ID matching the numeric gid value. %

The mask and ot her entries shall contain an empty qualifier. An implementa- %
tion may define additional ACL entry types that use the empty qualifier. %

A number-sign (#) starts a comment on an <acl_entry>line. A comment may start%
at the beginning of a line, after the required fields and after any implementation- %
defined, colon-separated fields. The end of the line denotes the end of the com- %
ment. %

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 Access Control Lists

129
130
131
132

133
134
135

136
137
138

139
140
141
142

143

144

145
146

147

148
149

150

151

152

153

154
155

If an ACL entry contains permissions that are not also contained in the mask %
entry, then the output text form for that <acl_entry> line shall be displayed as %
described above followed by a number-sign (#), the string "effective: ", and the %
effective access permissions for that ACL entry. %

White space is permitted in <acl_entry> lines as follows: at the start of the line; %
immediately before and after a “” separator; immediately before the first %
number-sign (#) character; at any point after the first number-sign (#) character. %

Comments shall have no effect on the discretionary access check of the object with%
which they are associated. An implementation shall define whether or not com- %
ments are stored with an ACL. %

If an implementation allows the colon character “:” to be present in an ACL entry %
qualifier, then that implementation shall provide a method for distinguishing %
between a colon character as a field separator in an ACL entry definition and a %
colon character as a component of the ACL entry qualifier value.

8.1.8 Exit Status

The get f acl utility shall exit with one of the following values:

0 The ACL for the specified file(s) was successfully retrieved and written
to standard output.

>0 An error occurred.

8.1.9 Consequence of Errors

Default.

8.2 setfacl — Set Access Control List

8.2.1 Synopsis

setfacl [-bdkn] [-m entries] [-M filel] [—x entries] [=X file2] | file...] %

8.2.2 Description

The set f acl utility changes discretionary access control information associated
with the specified file(s).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.2 setfacl — Set Access Control List 19

156 8.2.3 Options

157 The setf acl
158 described in 2.10.2.

159

160
161
162

163
164
165
166
167
168
169

170
171
172
173
174
175
176

177
178
179
180

181
182

183
184
185
186
187
188
189
190

191
192
193
194
195
196
197

20

-b
-d

-m entries

-M filel

-n

-X entries

=X file2

utility shall conform to the utility argument syntax guidelines

Remove all entries except the three required base entries.

The operation applies to the default ACL instead of the access
ACL. With this option, any file arguments must refer to files that
may have default ACLs (e.g., directories).

Delete any default ACLs on the specified files. It shall not be con-
sidered an error if one or more specified files could, but do not,
have a default ACL. An error shall be reported if one or more
specified files cannot have a default ACL. The —k option does not
require that the —-d option be specified. If the -k option is
specified, but the —d option is not specified, then all other options
apply to the access ACL and not to the default ACL.

Modify the access or default ACL by adding new entries and
updating existing entries with the entries specified in entries. The
entries option argument is a list of comma-separated ACL entries. |

Each ACL entry shall be in the form described in 8.2.7.1. Permis- %

sions in each ACL entry shall be specified by either an absolute

value or a relative value. See 8.2.7 for a discussion of how absolute%

values and relative values are used.

Modify the access or default ACL by adding new entries and updat-
ing existing entries with the entries specified in the pathname
filel. If filel is specified as “~”, set f acl will read entries from the|
standard input.

Do not recalculate the permissions associated with the ACL mask
entry.

Remove the ACL entries specified in entries from the access or
default ACL of the specified files. The entries option argument is a
list of comma-separated ACL entries. Each ACL entry shall be in
the form described in 8.2.7.1. The permissions field and the
preceding colon separator may be omitted from each ACL entry
specified in entries. If the permissions field is provided, then the
value of the permissions field shall be ignored during the process-
ing of the —x option.

Remove the ACL entries specified in the pathname file2 from the
access or default ACL on the specified files. If file2 is specified as
“~” setfacl will read entries from the standard input. The per-
missions field and the preceding colon separator may be omitted
from each ACL entry specified in file2. If the permissions field is
provided, then the value of the permissions field shall be ignored
during the processing of the —X option.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

8 Access Control Lists

%

198
199

200

201
202

203

204

205
206
207

208

209
210

211
212

213
214

215
216
217

218

219
220
221
222
223
224
225

226
227
228
229
230
231

The -b, -k, -m, -M, —x and —X options shall be evaluated in the order in which
they are specified in the invocation of the utility.

8.2.4 Operands

The following operand shall be supported by the implementation:

file A pathname of a file on which the specified actions are performed.

8.2.5 External Influences

8.2.5.1 Standard Input

If no file operands are specified or if a file operand of “~” is specified, setfacl |
shall read the list of pathnames on which to operate from standard input. The
format used shall be:

"%s\n", <file>

The results are unspecified if a pathname read from standard input contains a -
<newline> character.

If —M filel or —X file2 are specified and either filel or file2 is “=”, ACL entries are
read from standard input as specified in 8.2.5.2. %

Standard input shall not be read if a file operand is specified, no file operand is
“~” no filel option argument is “~”, and no file2 option argument is “-”.

The results are unspecified if more than one reference is made to standard input
by having no file operands, a file operand of “~”, a filel option argument of “~”, and
a file2 option argument of “-”.

8.2.5.2 Input Files

When the —-M option is specified, it shall be followed by a filel argument. The file |
specified by the filel operand shall contain one or more text form representations |
of an ACL entry. Each text form representation of an ACL entry shall be in the %
form described in 8.1.7. ACL entries shall be separated by <newline>. The
specified ACL entries shall be added to or updated in the access or default ACL(s)

on the specified file(s). The permissions of each ACL entry shall be specified by
either an absolute value or a relative value.

When the —X option is specified, it shall be followed by a file2 argument. The file |
specified in the file2 operand shall contain one or more text form representations |
of an ACL entry. Each text form representation of an ACL entry shall be in the %
form described in 8.1.7. ACL entries shall be separated by <newline>. The
specified ACL entries shall be removed from the access or default ACL(s) on the
specified file(s).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.2 setfacl — Set Access Control List 21

232

233

234
235
236
237

238
239
240

241
242
243
244

245
246

247
248

249

250
251

252
253

254
255

256

257
258
259
260
261
262
263

22

8.2.5.3 Environment Variables

The following environment variables shall affect the execution of set f acl :

LANG This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding
environment variable (beginning with L.C_) do not specify a
locale. See 2.6.

LC_ALL This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.

LC_CTYPE This variable shall determine the locale for this interpreta-

tion of sequences of bytes of text data as characters (e.g., |

single- versus multibyte characters in arguments and input |
files).

LC_MESSAGES This variable shall determine the language in which mes- |

sages should be written.

8.2.5.4 Asynchronous Events
Default.

8.2.6 External Effects

8.2.6.1 Standard Output

None.

8.2.6.2 Standard Error

Used only for diagnostic messages.

8.2.6.3 Output Files

None.

8.2.7 Extended Description

In all cases, if the resulting access or default ACL would not be valid, then the
utility shall fail for the current file and the access ACL, the default ACL, and the
file permission bits shall not be changed. This validity check is not performed
until all operations indicated by the specified options have been completed, i.e., at
any interim point in the manipulation of the ACL, the internal form of an ACL
may be "ill-formed," but it must be valid when the manipulations have been com-
pleted.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 Access Control Lists

264
265

266
267
268
269
270

271
272
273

274
275
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303
304

305
306
307

Two ACL entries shall be considered to match if their tag types are equal and
their tag qualifiers are equal.

If the —b option is specified, then all entries other than the three required base
entries shall be removed from the ACL. If the ACL contains a mask entry, then
the permissions associated with the owning group entry in the resulting ACL
shall be set to only those permissions associated with both the owning group
entry and the mask entry of the current ACL.

If the —m option is specified, the access or default ACL associated with a file
operand shall be modified by adding new entries and updating existing entries
with each of the ACL entries in the ACL representation specified by entries.

If the -M option is specified, the access or default ACL associated with a file
operand shall be modified by adding new entries and updating existing entries
with each of the ACL entries contained within filel.

For both the -m and —M options, if permissions are specified by an absolute value
and a matching entry is found, the entire new entry, including permissions, shall
replace the current matched entry. If permissions are specified by an absolute
value and a matching entry is not found in the ACL, then the entire new entry
shall be added to the ACL. If permissions are specified by a relative value and a
matching entry is found, the new permissions shall be computed by adding or
removing the relative permissions to or from, as appropriate, the permissions in
the matching entry. Permissions which are specified to be removed and which are
not contained in the permissions of the matching ACL entry shall have no effect
on the resulting permissions in the entry. The entire new entry, including the
computed permissions, shall replace the current matched entry. If permissions
are specified by a relative value and a matching entry is not found in the ACL,
then the new entry containing only those permissions specifically granted by the
relative value shall be added to the ACL. If no permissions are specified as being
added to the entry or if the relative value specifies only the removal of permis-
sions, then the new entry containing no permissions shall be added to the ACL.

For both the -m and —M options, if a mask entry is specified, then the permis-
sions of the mask entry in the resulting ACL shall be set to the permissions in
the specified ACL mask entry. If no mask entry is specified and the —n option is
not specified, then the permissions of the resulting ACL mask entry shall be set
to the union of the permissions associated with all entries which belong to the file
group class in the resulting ACL after all -b, -k, -m, -M, —x, and —X operations
have been performed. If no mask entry is specified and the —n option is specified,
then the permissions of the resulting ACL mask entry shall remain unchanged
from the existing ACL(s) associated with the file operands. If no mask entry is
specified, the —n option is specified, and no ACL nask entry exists in the ACL
associated with a file operand, then the set f acl utility shall write an error mes-
sage to standard error and continue with the next file.

If the —x option is specified, those entries in the access or default ACL associated
with a file operand which match entries in the ACL representation specified by
entries shall be removed.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8.2 setfacl — Set Access Control List 23

308
309
310

311
312
313
314
315
316
317
318

319

320
321

322

323
324

325
326
327
328
329

330

331
332
333
334

335

336
337
338

339
340

24

If the —X option is specified, those entries in the access or default ACL associated
with a file operand which match ACL entries contained within file2 shall be
removed.

For both the —x and —X options, if a mask entry is specified, then the nask entry
shall be removed from the existing ACL. If no mask entry is specified and the —n
option is not specified, then the permissions of the resulting ACL nmask entry
shall be set to the union of the permissions associated with all entries which
belong to the file group class in the resulting ACL after all -b, -k, -m, -M, —x, and
—X operations have been performed. If no mask entry is specified and the —n
option is specified, then the permissions of the resulting ACL mask entry shall

remain unchanged in the ACL(s) associated with the file operands. %
8.2.7.1 ACL Text Format %
For both the -m and —x options, the get f acl utility shall accept a list of ACL %
entries in the following form: %
<acl_entry>[,<acl_entry>]... %

Each <acl_entry> shall contain one ACL entry, as defined in 8.1.7, with two excep-%
tions. %

The ACL entry tag type keyword shall appear in the first field in either its full %
unabbreviated form or its single letter abbreviated form. The abbreviation for %
user is “u”, the abbreviation for gr oup is “g”, the abbreviation for ot her is “0”,%
and the abbreviation for mask is “ni’. An implementation may define additional %
ACL entry tag type abbreviations. %

There are no exceptions for the second field in the short text form for ACLs. %

The discretionary access permissions shall appear in the third field. The symbolic%
string shall contain at most one each of the following characters in any order: r, %
w, and X; implementations may define additional characters that may appear in %
any order within the string.

8.2.8 Exit Status

The set f acl utility shall exit with one of the following values:
0 Executed successfully and all requested changes were made.

>0 An error occurred.

8.2.9 Consequence of Errors

Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 Access Control Lists

© o000 Otk W

10

11

12

13

14
15

16

17
18

19

20
21
22

23
24
25
26
27

Section 9: Capability %

This section describes utilities for the retrieval, modification, and manipulation of
the capability state of files, and the retrieval of the capability state for processes.

Three utilities are specified to support capability operations: getfcap,
get pcap, and set f cap.

Support for the utilities defined in this section is optional but shall be provided by
any implementation claiming conformance to the Capability Utilities Option.
Such an implementation shall provide all of the utilities as described in this sec-
tion.

9.1 getfcap — Get the Capability State of a File

9.1.1 Synopsis

getfcap [—-m|-Mflag_spec | [target...] %

9.1.2 Description

The get f cap utility writes the capability state of the specified target files to stan-
dard output.

9.1.3 Options

The getfcap utility shall conform to the utility argument syntax guidelines
described in 2.10.2.

The following options shall be supported by the implementation:

-m Produce output for only those capabilities that have at least one
flag set. The default is to produce output for all capabilities
defined by the implementation.

-M flag_spec Produce output only for those capabilities that have at least one
of the flags specified in flag spec set. The default is to produce
output for all capabilities defined by the implementation.
flag_spec contains one or more character(s), each of which
represents a capability flag defined in the implementation:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.1 getfcap — Get the Capability State of a File 25

28
29
30

31
32
33
34
35

36

37

38
39
40
41
42
43
44
45

46

47

48
49
50
51

52

53

54

55
56
57
58

26

9.1.4 Operands

e Specifies the effective capability flag.
i Specifies the inheritable capability flag.
p Specifies the permitted capability flag.

Future revisions of this standard may use other lowercase
letters in the portable filename character set in flag spec.
Uppercase letters in the portable filename character set are
reserved for implementations to refer to implementation-defined
capability flags.

The following operand shall be supported by the implementation:

target

Target represents the pathname(s) of the file(s) whose capability
state shall be displayed. If no target is specified or if a target
operand is “-”, get f cap shall read a list of zero or more path-
names, each terminated by one <newline> character, from stan-
dard input. If a pathname read from standard input contains
only a <newline> character, the results are unspecified. This list
of pathnames read from standard input shall be terminated by
end-of-file (EOF).

9.1.5 External Influences

9.1.5.1 Standard Input

The standard input shall be used only if no target operands are specified, or if a

target operand is

“_»

. If the use of standard input is specified, get f cap shall

read a list of zero or more pathnames from standard input.

9.1.5.2 Input Files

None.

9.1.5.3 Environment Variables

The following environment variables shall affect the execution of get f cap:

LANG

This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding
environment variable (beginning with LLC_) do not specify a
locale. See 2.6.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

9 Capability

59 LC_ALL This variable shall determine the locale to be used to over-

60 ride any values for locale categories specified by the settings
61 of LANG or any environment variables beginning with LC_.
62 LC_CTYPE This variable shall determine the locale for this interpreta-
63 tion of sequences of bytes of text data as characters (e.g.,
64 single-versus multibyte characters in arguments).

65 LC_MESSAGES This variable shall determine the language in which mes-
66 sages should be written.

67 9.1.5.4 Asynchronous Events
68 Default.

69 9.1.6 External Effects

70 9.1.6.1 Standard Output

71 A textual representation of the capability state of the target file(s) specified will
72 be written to the standard output. If multiple targets are specified, the output for
73 each target will be preceded by the identifier for that target. The format shall be: %

74 "%s:\n", <target> %

75 The state of the capabilities for each target shall be written according to the text |
76 form representation specified. -

77 9.1.6.2 Standard Error

78 Used only for diagnostic messages.

79 9.1.6.3 Output Files
80 None.

81 9.1.7 Extended Description
82 None.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.1 getfcap — Get the Capability State of a File 27

83

84
85
86

87

88
89
90
91

92

93

94

95

96
97

98

99
100

101

102
103
104
105

106
107
108
109
110

111
112

28

9.1.8 Exit Status

The get f cap utility shall exit with one of the following values:
0 The capability state of the specified target was successfully reported. |

>0 An error occurred.

9.1.9 Consequence of Errors

The file pathname that was being examined when the error occurred shall be
written to the error output file along with a brief error message. Processing of
that target shall immediately be terminated, and the command shall continue
with the next target, if specified.

9.2 getpcap — Get the Capability State of a Process

9.2.1 Synopsis

getpcap [-m|-Mflag_spec | %

9.2.2 Description

The get pcap utility writes the capability state of the invoking process to stan-
dard output.

9.2.3 Options

The get pcap utility shall conform to the utility argument syntax guidelines
described in 2.10.2.

The following options shall be supported by the implementation:

-m Produce output for only those capabilities that have at least one
flag set, and for only those capability attributes that are set. The
default is to produce output for all capabilities defined by the
implementation.

-M flag_spec Produce output only for those capabilities that have at least one
of the flags specified in flag_spec set. The default is to produce
output for all capabilities defined by the implementation.
flag spec contains one or more character(s), each of which
represents a capability flag defined in the implementation:

e Specifies the effective capability flag.
i Specifies the inheritable capability flag.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9 Capability

113

114
115
116
117
118

119
120

121

122
123

124
125

126

127

128
129
130
131

132
133
134

135
136
137

138
139

140
141

p Specifies the permitted capability flag.

Future revisions of this standard may use other lowercase
letters in the portable filename character set in flag_spec.
Uppercase letters in the portable filename character set are
reserved for implementations to refer to implementation-defined
capability flags.

9.2.4 Operands

None.

9.2.5 External Influences

9.2.5.1 Standard Input

None.

9.2.5.2 Input Files

None.

9.2.5.3 Environment Variables

The following environment variables shall affect the execution of get pcap:

LANG This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding

environment variable (beginning with LC_) do not specify a
locale. See 2.6.

LC_ALL This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.

LC_CTYPE This variable shall determine the locale for this interpreta-
tion of sequences of bytes of text data as characters (e.g.,
single versus multibyte characters in arguments).

LC_MESSAGES This variable shall determine the language in which mes-
sages should be written.

9.2.5.4 Asynchronous Events
Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.2 getpcap — Get the Capability State of a Process 29

142 9.2.6 External Effects

143 9.2.6.1 Standard Output

144 The get pcap utility writes to standard output the textual representation of the |
145 capability state of the invoking process in the text form specified in 9.1. The fol- %
146 lowing format shall be used:

147 "%s:\n", <process_cap>

148 9.2.6.2 Standard Error

149 Used only for diagnostic messages.
150 9.2.6.3 Output Files

151 None.

152 9.2.7 Extended Description

153 None.

154 9.2.8 Exit Status

155 The get pcap utility shall exit with one of the following values:

156 0 The capability state of the specified target(s) was(were) successfully
157 reported.
158 >0 An error occurred.

159 9.2.9 Consequence of Errors

160 None.

161 9.3 setfcap — Set Capability State of a File

162 9.3.1 Synopsis

163 setfcap -e state [—e state |—f state_file]| ... [target...] %
164 setfcap -f state_file [—e state | —f state_file] ... [target...] %
165 setfcap state [target...]

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

30 9 Capability

166 9.3.2 Description

167 The setfcap utility changes the capability state associated with the specified
168 file(s). The state to be set is defined by the —e option, the —f option, or the state
169 operand. If no —e options and no -f options are specified, the last form is assumed.%
170 The state operand’s value consists of one or more capabilities as defined by the
171 text form representation specified in 9.1. If a complete capability state is %
172 specified, that capability state completely replaces any existing capability state on
173 the file. If only a partial capability state is specified, the old capability state will
174 be a modified to reflect the specification.

175 9.3.3 Options

176 The setfcap utility shall conform to the utility argument syntax guidelines
177 described in 2.10.2.

178 —-e state Specify a partial or complete capability state, consisting of one or
179 more capability specifications, to be assigned to each of the
180 target(s). Capability specifications in state shall be separated by
181 a <comma> or <new i ne>. A null capability specification can
182 be specified by two adjacent <newl i ne>s or <conma>s in state.
183 Null capability specifications shall be ignored. The capability
184 specification is described by the text form representation
185 specified in 9.1. %
186 —f state_file Read one or more capability specifications that represent a par-
187 tial or complete capability state from the file named by the path-
188 name state file. Capability specifications in state file shall be
189 terminated by a <new i ne>. A null capability specification can
190 be specified by an empty line in state_file. Null capability
191 specifications shall be ignored. If state_file is specified as a dash
192 “~” set f cap shall read capability specifications from the stan-
193 dard input file. +

194 Multiple —e and —f options shall be accepted by the set f cap utility, in which +
195 case the capability specifications shall be processed in the order they are specified.

196 9.3.4 Operands

197 The following operands shall be defined by the implementation: |

198 state State represents the partial or complete capability state to be |
199 assigned. Capability specifications in state shall be separated by

200 a <comm> or <new i ne>. A null capability specification can |
201 be specified by two adjacent <newl i ne>s or <conma>s in state.|

202 Null capability specifications shall be ignored. The capability |
203 specification is described by the text form representation |
204 specified in 9.1. %

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.3 setfcap — Set Capability State of a File 31

205 target Target represents the name(s) of the file(s) whose capability

206 state is (are) to be modified. If no target is specified, or is “-”,
207 and no state_file argument is specified as a dash “-”, setf cap
208 shall read a list of pathnames, separated by one or more white
209 space characters, from the standard input file, terminated by
210 end-of-file (EOF).

211 9.3.5 External Influences

212 9.3.5.1 Standard Input

213 The set f cap utility shall read capability state information from standard input
214 if a state_file option argument is “-” (see 9.4.3) and shall read pathnames from %
215 standard input if a target operand is “=” or if no target operands are specified (see %
216 9.4.4). Otherwise, standard input shall not be read. The results are unspecified if|
217 more than one reference is made to standard input by having “-” as a statefile |
218 option argument, having no operands, or by having “~” as a target operand.

219 9.3.5.2 Input Files

220 The state_file option argument shall be interpreted as the pathname of a file that
221 contains a set of correct external representations of capability states, as described
222 Dby the text form representation specified. -

223 9.3.5.3 Environment Variables

224 The following environment variables shall affect the execution of set f cap:

225 LANG This variable shall determine the locale to use for the locale
226 categories when both LC_ALL and the corresponding
227 environment variable (beginning with LLC_) do not specify a
228 locale. See 2.6.

229 LC_ALL This variable shall determine the locale to be used to over-
230 ride any values for locale categories specified by the settings
231 of LANG or any environment variables beginning with LC_.
232 LC_CTYPE This variable shall determine the locale for this interpreta-
233 tion of sequences of bytes of text data as characters (e.g.,
234 single versus multibyte characters in arguments).

235 LC_MESSAGES This variable shall determine the language in which mes- |
236 sages should be written.

237 9.3.5.4 Asynchronous Events
238 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

32 9 Capability

239 9.3.6 External Effects

240 9.3.6.1 Standard Output
241 None.

242 9.3.6.2 Standard Error

243 Used only for diagnostic messages.

244 9.3.6.3 Output Files
245 None.

246 9.3.7 Extended Description

247 None.

248 9.3.8 Exit Status

249 The set f cap utility shall exit with one of the following values:
250 0 The specified capability state changes were successfully made.

251 >0 An error occurred.

252 9.3.9 Consequences of Errors

253 In the event of an error, the capability state of the target that caused the error
254 shall not be modified, and set f cap shall continue on to the next file. Each diag-
255 nostic message indicating that the capability state of a target could not be |
256 changed shall include the name of the target.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

9.3 setfcap — Set Capability State of a File 33

H O WO 06 0tk Wi

—

12

13

14

15

16
17
18
19

20
21

22
23

Section 10: Mandatory Access Control %

This section describes the utilities that shall be implemented on all systems that
claim conformance to the Mandatory Access Control Utilities Option.

Support for the utilities defined in this section is optional but shall be provided by
any implementation claiming conformance to the Mandatory Access Control Utili-
ties Option. Such an implementation shall provide all of the utilities as described
in this section.

Three utilities are specified to support mandatory access control. The get f mac
utility provides the means for a user to display the MAC label of a file. The get p-
mac utility provides the means for a user to display the MAC label of the current
process. The set f mac utility provides the means to set the MAC label of a file.

10.1 getfmac — Get the MAC Label of a File

10.1.1 Synopsis

getfmac | file...]

10.1.2 Description

The get f mac utility writes to standard output the text form of MAC labels. For
each file operand, the getfmac utility shall perform the equivalent to the
POSIX.1e mac_get_file() and mac_to_text() functions, and write the returned text
string to standard output.

The get f mac utility requires mandatory read access to each file for which the
label has been requested.

10.1.3 Options

None.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10.1 getfmac — Get the MAC Label of a File 35

24 10.1.4 Operands

25 The following operand shall be supported by the implementation: |
26 file The pathname of a file whose MAC label is to be written. If file is not

27 specified, or a file is specified as a “~”, then get f mac shall read a list of
28 pathnames, each terminated by one <newline> character, from the stan-
29 dard input. -

30 10.1.5 External Influences

31 10.1.5.1 Standard Input

32 If no file operand is specified, or a file is specified as a “~”, then get f mac will
33 accept a list of zero or more pathnames, each terminated by one <newline> char-
34 acter, from the standard input.

35 10.1.5.2 Input Files
36 None.

37 10.1.5.3 Environment Variables

38 The following environment variables shall affect the execution of get f mac:

39 LANG This variable shall determine the locale to use for the locale
40 categories when both LC_ALL and the corresponding
41 environment variable (beginning with LLC_) do not specify a
42 locale. -
43 LC_ALL This variable shall determine the locale to be used to over-
44 ride any values for locale categories specified by the settings
45 of LANG or any environment variables beginning with LC_.
46 LC_CTYPE This variable shall determine the locale for this interpreta-
47 tion of sequences of bytes of text data as characters (e.g.,
48 single- versus multibyte characters in arguments and stan- |
49 dard input).

50 LC_MESSAGES This variable shall determine the language in which mes- |
51 sages should be written.

52 10.1.5.4 Asynchronous Events
53 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

36 10 Mandatory Access Control

54 10.1.6 External Effects

55 10.1.6.1 Standard Output

56 The following format shall be used for each file processed: %
57 "%s:\t%s\n" <file name>,<file_MAC_label>

58 The output format of the <file MAC label> shall be suitable for re-input as the -
59 label operand to the set f mac utility on the same system. -

60 10.1.6.2 Standard Error

61 Used only for diagnostic messages.

62 10.1.6.3 Output Files
63 None.

64 10.1.7 Extended Description

65 None.

66 10.1.8 Exit Status

67 The get f mac utility shall exit with one of the following values:
68 0 The utility executed successfully.

69 >0 An error occurred.

70 10.1.9 Consequence of Errors

71 Default.

72 10.2 getpmac — Get Text Form Of Current Process’s MAC Label

73 10.2.1 Synopsis

74 get pmac

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10.2 getpmac — Get Text Form Of Current Process’s MAC Label 37

75 10.2.2 Description

76 The get pmac utility writes the text form of the MAC label of the current process.

77 10.2.3 Options
78 None.

79 10.2.4 Operands
80 None.
81 10.2.5 External Influences

82 10.2.5.1 Standard Input
83 None.

84 10.2.5.2 Input Files
85 None.

86 10.2.5.3 Environment Variables

87 The following environment variables shall affect the execution of get pmac:

88 LANG This variable shall determine the locale to use for the locale
89 categories when both LC_ALL and the corresponding
90 environment variable (beginning with LC_) do not specify a
91 locale. See 2.6. %
92 LC_ALL This variable shall determine the locale to be used to over-
93 ride any values for locale categories specified by the settings
94 of LANG or any environment variables beginning with LC_.-
95 LC_MESSAGES This variable shall determine the language in which mes- |
96 sages should be written.

97 10.2.5.4 Asynchronous Events
98 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

38 10 Mandatory Access Control

99

100

101
102

103
104

105
106

107

108

109
110

111

112
113
114

115
116

117

118

119

10.2.6 External Effects

10.2.6.1 Standard Output

The following output format shall be used;
"%s\n",<process_MAC label>

The output format of the <process_ MAC_label> shall be suitable for re-input as
the label operand to the set f mac utility on the same system. -

10.2.6.2 Standard Error

Used only for diagnostic messages.

10.2.6.3 Output Files

None.

10.2.7 Extended Description

None.

10.2.8 Exit Status

The get prmac utility shall exit with one of the following values:
0 The utility executed successfully.

>0 An error occurred.

10.2.9 Consequence of Errors

Default.

10.3 setfmac — Set the MAC Label of a File

10.3.1 Synopsis

setfmac label [file...]

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10.3 setfmac — Set the MAC Label of a File 39

120

121
122
123

124
125

126

127
128

129
130
131
132
133

134

135

136
137
138
139

140
141

142

143

144
145
146
147

148
149
150

40

10.3.2 Description

The set f mac utility changes the MAC label of each specified file to the label
specified by label. For each file operand, the set f mac utility shall perform the
equivalent to the POSIX.1e mac_from_text() and mac_set_file() functions.

10.3.3 Options

None.

10.3.4 Operands

The following operands shall be supported by the implementation: |
label The textual representation of the MAC label specified.

file The pathname of a file whose MAC label is to be changed. If file is not
specified, or a file is specified as a “~”, then set f mac shall read a list of
pathnames, each terminated by one <newline> character, from the stan-
dard input. If a pathname read from standard input contains only a
<newline> character, the results are unspecified.

10.3.5 External Influences

10.3.5.1 Standard Input

If no file operand is specified, or a file is specified as a “~”, then set f mac will
accept a list of one or more pathnames, each terminated by one <newline> charac-
ter, from the standard input. The results are unspecified if “-” is specified as a |
file operand more than once.

10.3.5.2 Input Files

None.

10.3.5.3 Environment Variables

The following environment variables shall affect the execution of set f mac:

LANG This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a
locale. See 2.6. %

LC_ALL This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10 Mandatory Access Control

151 LC_CTYPE This variable shall determine the locale for this interpreta-

152 tion of sequences of bytes of text data as characters (e.g.,
153 single versus multibyte characters in arguments).

154 LC_MESSAGES This variable shall determine the language in which mes- |
155 sages should be written.

156 10.3.5.4 Asynchronous Events
157 Default.

158 10.3.6 External Effects

159 10.3.6.1 Standard Output
160 None.

161 10.3.6.2 Standard Error

162 Used only for diagnostic messages.

163 10.3.6.3 Output Files
164 None.

165 10.3.7 Extended Description
166 None.

167 10.3.8 Exit Status

168 The set f mac utility shall exit with one of the following values:
169 0 The utility executed successfully.

170 >0 An error occurred.

171 10.3.9 Consequence of Errors

172 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10.3 setfmac — Set the MAC Label of a File 41

H O OO OOtk W

T

12

13

14

15

16
17
18
19

20
21

Section 11: Information Labeling %

This section describes utilities for the retrieval and manipulation of information
labels on specified objects.

Support for the utilities defined in this section is optional but shall be provided by
any implementation claiming conformance to the Information Label Option. Such
an implementation shall provided all of the utilities as described in this section.

Three utilities are specified to support information labeling. The get fi nf utility
provides the means for a user to display the information label of a file. The get -
pi nf utility provides the means for a user to display the information label of the
current process. The set fi nf utility provides the means for a user to set the
information label of a file.

11.1 getfinf — Get File Information Label

11.1.1 Synopsis

getfinf [file..]

11.1.2 Description

The get f i nf utility writes to standard output the text form of information labels.
For each file operand, the get fi nf utility shall perform the equivalent to the
POSIX.1e inf get_file() and inf to_text() functions, and write the returned text
string to standard output.

11.1.3 Options

None.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.1 getfinf — Get File Information Label 43

22

23
24

25

26

27
28
29
30

31
32

33

34

35
36
37
38

39
40
41

42
43
44
45

46
47

48
49

44

11.1.4 Operands

The following operand shall be supported by the implementation:

file The pathname of a file whose information label is to be written.

11.1.5 External Influences

11.1.5.1 Standard Input

If no file operand is specified, or a file is specified as a “-”, then get fi nf shall

read a list of zero or

input shall not be read. The results are unspecified if “~” is specified as a file |

more pathnames from standard input. Otherwise standard

operand more than once.

11.1.5.2 Input Files

None.

11.1.5.3 Environment Variables

The following environment variables shall affect the execution of get fi nf :

LANG

LC_ALL

LC_CTYPE

LC_MESSAGES

This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a
locale. See 2.6.

This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.

This variable shall determine the locale for this interpreta-
tion of sequences of bytes of text data as characters (e.g.,
single- versus multibyte characters in arguments and stan-
dard input).

This variable shall determine the language in which mes-
sages should be written.

11.1.5.4 Asynchronous Events

Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11 Information Labeling

50 11.1.6 External Effects

51 11.1.6.1 Standard Output

52 The following format shall be used for each file operand specified if multiple

“_»

53 operands are specified, or if the file operand is specified as “-”.
54 "%s:\t%s\n", <file_name>, <file_information_label>

55 The output format of the label shall be suitable for re-input as the inflabel -
56 operand to the set fi nf utility on the same system. +

57 11.1.6.2 Standard Error

58 Used only for diagnostic messages.

59 11.1.6.3 Output Files
60 None.

61 11.1.7 Extended Description
62 None.

63 11.1.8 Exit Status

64 The get fi nf utility shall exit with one of the following values:

65 0 The information labels associated with all specified files were success-
66 fully reported.
67 >0 An error occurred.

68 11.1.9 Consequences of Errors

69 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.1 getfinf — Get File Information Label 45

70

71

72

73

74
75
76

77
78

79
80

81

82
83

84
85

86

87

88
89
90
91

92
93
94

46

11.2 getpinf — Get Process Information Label

11.2.1 Synopsis

get pi nf

11.2.2 Description

The get pi nf utility writes the information label associated with the current pro-
cess to standard output. Note that some floating policies may cause this label to
differ from that of the invoking process (e.g., command interpreter).

11.2.3 Options

None.

11.2.4 Operands

None.

11.2.5 External Influences

11.2.5.1 Standard Input

None.

11.2.5.2 Input Files

None.

11.2.5.3 Environment Variables

The following environment variables shall affect the execution of get pi nf :

LANG This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding
environment variable (beginning with LC_) do not specify a
locale. See 2.6.

LC_ALL This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.-

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11 Information Labeling

95
96

97
98

99

100
101

102

103
104

105
106

107
108

109
110

111

112

113
114

115

116
117

LC_MESSAGES This variable shall determine the language in which mes-
sages should be written.

11.2.5.4 Asynchronous Events
Default.

11.2.6 External Effects

11.2.6.1 Standard Output

The following format shall be used:
"%s\n", <process_information_label>

The output format of the label shall be suitable for re-input as the inflabel
operand to the set f i nf utility on the same system. +

11.2.6.2 Standard Error

Used only for diagnostic messages.

11.2.6.3 Output Files

None.

11.2.7 Extended Description

None.

11.2.8 Exit Status

The get pi nf utility shall exit with one of the following values:

0 The information label associated with the invoking process was suc-
cessfully reported.

>0 An error occurred.

11.2.9 Consequences of Errors

Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.2 getpinf — Get Process Information Label 47

118

119

120

121

122
123

124
125

126

127

128
129

130

131

132

133
134
135

136
137

138

139

140
141
142
143

48

11.3 setfinf — Change File Information Label

11.3.1 Synopsis

setfinf inflabel [file...]

11.3.2 Description

The setfinf utility sets the information label associated with each of the
specified files to the specified information label.

11.3.3 Options

None.

11.3.4 Operands

The following operands shall be supported by the implementation:

inflabel The new information label to be associated with each of the specified
files.

file The pathname of a file whose information label is to be changed. -

11.3.5 External Influences

11.3.5.1 Standard Input

If no file operand is specified, or a file is specified as a “~”, then set fi nf shall
read a list of zero or more pathnames from standard input. Otherwise standard
input shall not be read.

11.3.5.2 Input Files

None.

11.3.5.3 Environment Variables

The following environment variables shall affect the execution of set fi nf :

LANG This variable shall determine the locale to use for the locale
categories when both LC_ALL and the corresponding

environment variable (beginning with LC_) do not specify a
locale. See 2.6.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11 Information Labeling

144
145
146

147
148
149
150

151
152

153
154

155

156
157

158
159

160
161

162
163

164

165

166
167

168

LC_ALL This variable shall determine the locale to be used to over-
ride any values for locale categories specified by the settings
of LANG or any environment variables beginning with LC_.

LC_CTYPE This variable shall determine the locale for this interpreta-
tion of sequences of bytes of text data as characters (e.g.,
single- versus multibyte characters in arguments and stan-
dard input).

LC_MESSAGES This variable shall determine the language in which mes-
sages should be written.

11.3.5.4 Asynchronous Events
Default.

11.3.6 External Effects

11.3.6.1 Standard Output

None.

11.3.6.2 Standard Error

Used only for diagnostic messages.

11.3.6.3 Output Files

None.

11.3.7 Extended Description

None.

11.3.8 Exit Status

The set f i nf utility shall exit with one of the following values:

0 The information labels associated with all specified files were success-
fully changed.

>0 An error occurred.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.3 setfinf — Change File Information Label 49

169 11.3.9 Consequences of Errors

170 Default.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

50 11 Information Labeling

Annex E
1 (informative)

2 Revisions to the General Section

3 0O E.2.9.3 Concepts Derived from the Security Standard Rationale Add
4 this as a new section.

5 This subclause was introduced to describe the relationship between capabili-
6 ities defined in POSIX.2¢c and the power or trust associated with a user
7 account, commonly called an authorization in security literature. The
8 POSIX.1 and POSIX.2 standards purposely do not assume the traditional

9 superuser model of trust (effective or real user ID 0), or any other model.
10 Rather, the phrase “appropriate privilege” is included in POSIX.1 to allow for
11 traditional POSIX implementations and trusted system implementations that
12 can support POSIX.1 conforming applications.

13 The enforcement of power by trusted applications can be based on the identity
14 of the invoking user or on the presence of a trusted program in the process
15 chain that preceded the execution of the utility in the current process. The
16 inheritance of trust, or the indication of a previous trusted process image,
17 through the process chain is the motivation behind the inheritable capabilities|
18 flag in the POSIX.2c standard. The state of the user’s initial process inherit-
19 able flags at user authentication time is unspecified by POSIX.2¢ because
20 there is no concept of a user account or a user authentication profile that
21 would normally contain this information. Similarly, the manner in which an
22 administrator or security officer assigns trust or power to user accounts is

23 similarly unspecified by POSIX.2c.

24 Therefore, the constraints imposed by the utilities defined in POSIX.2 must be
25 specified as behaving differently given “appropriate privilege” or “appropriate
26 authorization.” Until the mechanisms for enforcement are specified by
27 POSIX.2¢, this concept must remain undefined.

28 The two major goals in determining changes to POSIX.2 were to define
29 minimal changes, and to avoid requiring that particular utilities be added to
30 the TCB.

31 The main reason for avoiding changes to POSIX.1 and POSIX.2 is the lack of

32 consensus of existing practice. For example, some implementations add
33 options to the | s utility to display security attributes, while others define new
34 utilities. Even those which add options are inconsistent in the options and the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.3 setfinf — Change File Information Label 51

35
36
37

38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57

58
59

60
61
62
63

64
65

66

67
68

52

formats used. Additionally, there is no strong justification for adding options
to some utilities. For example, options to t est to compare MAC labels may be
desirable, but it is not yet clear what tests are useful.

Putting particular utilities in the TCB causes a ripple effect, possibly forcing
utilities like the shell into the TCB. This was considered undesirable. In
order to avoid putting utilities into the TCB, the standard does not specify
capabilities required by or used by particular utilities.

For example, the standard does not require that the chown utility use the
CAP_CHOWN capability if the invoking process includes that capability in its |
inheritable set, nor does it require that the file containing the chown utility
include that capability in its permitted set. Thus, inclusion of the
CAP_CHOWN capability in the inheritable set may or may not cause the
chown utility to use the capability. Another example is the ps utility, where
the standard does not specify what capabilities may be required in order to get|
information about processes, nor the capability enforced. Neither does the
standard specify whether any policy or capabilities are enforced by the ps util-
ity (as in some historical implementations which use /dev/kmem), or by the
underlying system (as in other implementations which use /dev/proc or simi-
lar mechanisms).

Thus, rather than requiring specific capabilites, the standard makes the capa-|
bilities required by particular utilities implementation-defined. By not
defining capabilities, the standard leaves open utility based authentication
using mechanisms outside this standard.

E.2.13.2 Symbolic Constants for Portability Specifications
(POSIX.2: line 2875) Insert the following after line 2875:

POSI X2_ACL See the rationale in E.8

POSI X2__CAP See the rationale in E.9 %
POSI X2_| NF See the rationale in E.11 %
POSI X2_MAC See the rationale in E.10 %

E.4.6 chgrp — Change file group ownership Rationale for the lack of
changes to this section in POSIX.2 is provided below:

The chgr p utility refers to the chown function in POSIX.1 for its functional-

ity. While this standard specifies the capabilities required for the function, it |
does not specify the capabilities requires for the utility.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

69 [0 E.4.7 chmod — Change file mode Rationale for the lack of changes to this
70 section in POSIX.2 is provided below:

71 The chnod utility does not refer to the chnod function in POSIX.1 for the
72 exclusive definition of its functionality, but rather specifies “appropriate
73 privilege.” This standard does not define appropriate privilege for utilities.

74 [E.4.8 chown — Change file ownership Rationale for the lack of changes to
75 this section in POSIX.2 is provided below:

76 The chown utility refers to the chown function in POSIX.1 for its functional-
77 ity. While this standard specifies the capabilities required for the function, it |
78 does not specify the capabilities requires for the utility.

79 [0 E.4.13 cp — Copy files Rationale for changes to this section in POSIX.2 is pro-
80 vided below:

81 The definition of cp calls for duplicating file permission bits when a new file is
82 created, and for propagating certain characteristics of files when the “-p”
83 option is given. ACLs are included in these propagated characteristics. ACLs
84 are not copied in absence of the “—p” option to maintain compatibility in the

85 cases where the ACL can not be copied.

86 Note that in the absence of the “~p” option, the cp utility already specifies that
87 new files are created using open(), specifying the file permission bits of the
88 source file in the mode argument, and POSIX.1e specifies the impact of default
89 ACLs on open(). The result being that if there is a default ACL on the destina-
90 tion directory, the resulting ACL on the destination file will be the default
91 ACL modified by the permission bits of the source file. This effectively will
92 limit access to the newly created file to the minimum of accesses specified in
93 the default ACL and the source file permissions. If the destination directory
94 does not have a default ACL, then the permission bits of the newly created file
95 will be the source file permission bits as modified by the umask.

96 Experience with historical operating systems has shown that it is important to
97 be able to specify whether the old ACL is copied (as when the —p option is
98 specified), or whether to apply the normal creation defaults (when the —p
99 option is not specified). While this standard does not require any particular
100 option, implementors are advised to add specific options to copy the old ACL
101 without copying the other attributes brought along when the “—p” option is
102 used.

103 No specific feature is provided for copying MAC labels, information labels, or |
104 capabilities when the “-p” option is provided. Such a feature would require use
105 of appropriate privilege, which this standard avoids wherever possible.

106 It would appear feasible to specify the information label of the copied file.
107 However, that label may depend on the label of the invoking process and the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.3 setfinf — Change File Information Label 53

108
109
110
111

112
113
114
115

116
117

118
119
120

121
122

123
124
125
126
127
128

129

130
131

132
133
134
135
136

137

54

files being copied. Additionally, it may depend on the order in which the
operations are performed. For example, a request to copy several files could
cause the information label of the last file copied to float up to include all of the
previous files. Such a definition would be too complex to be of any use.

The only statement that is clearly true is that the information label of the des-
tination file will dominate the information label of the invoking process, the
information label of the source file, and the information label of the destination
file (if it already existed).

0 E.4.16 dd — Convert and copy a file Rationale for the lack of changes to this

section in POSIX.2 is provided below:

The dd utility is a sophisticated copy tool frequently used for copying disks
and tapes. However, because it relies on the lower level primitives (such as
the open function in POSIX.1) no changes are required.

0 E.4.24 find — Find files Rationale for the lack of changes to this section in

POSIX.2 is provided below:

Some consideration was given to adding options to fi nd to locate files based
on MAC labels, information labels, capabilties, and ACLs. However, there was
no overwhelming evidence that such options are necessary. Furthermore, they
can be emulated using existing features of the fi nd utility. For example, to
find a file based on the presence of a particular user in the file’s ACL, use the
following statement:

find directory -exec checkacl {} username \;

where directory is the directory being searched, username is the user being
searched for, and checkacl is the following shell script:

getfacl $1 | grep -s $2 >/dev/null
if[$2-eq 0]
then
printf "%s0$1"
fi

Similar scripts can be written to find files based on other attributes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

138
139

140
141
142
143

144
145

146
147
148

149
150
151

152
153
154
155

156
157
158

159
160
161
162

163
164
165
166
167
168

169
170
171
172
173
174

0 E.4.26 getconf — Get configuration values Rationale for the lack of changes

to this section in POSIX.2 is provided below:

The description of the get conf utility does not list the configuration parame-
ters, but refers to the appropriate tables in POSIX.1. Because POSIX.1le is
updating the POSIX.1 tables, the additional configuration parameters are
included in the get conf utility by reference.

0 E.4.38 Ip — Send files to a printer Rationale for why no changes were made

to this section in POSIX.2 is provided below:

The ballot resolution group came to the conclusion that labeling of print output
is a policy issue, not an interface issue, and therefore the standard should not
require | p to print MAC or information labels.

There are several issues associated with | p: human readable label format,
what label(s) to print, suppression of human readable labels, and rejection of
spool requests.

The standard does not address the format of human readable labels because it
is not an interface issue. Further, there is no agreement on what is contained
in a MAC or information label, so any discussion of the human readable form
is pointless.

It is arguable whether the MAC label on printed output should be the MAC
label of the file being printed or the MAC label of the process making the print
request.

There is some sentiment that the information label of a file and/or process
making a print request should also be printed on each page. The standards
committee did not see a strong demand for this facility, and hence it is not
included in the standard.

Suppression of human readable labels can be considered an interface issue,
but it is not required by the TCSEC. Rather, it is allowed as an exception, pro-
viding that auditing is performed. While many implementations will provide
this exception, there was no consensus that it is required as an option, espe-
cially because the POSIX.2 standard explicitly states that the format of any
output is implementation defined.

In a secure system, | p may reject spool requests based on criteria such as the
physical location of the printer, security level of the requesting user, or time of
day. The standard provides a general allowance for any unspecified policy for
rejecting or cancelling print requests. The statement “..if such a device is not
available to the application...” allows a conforming system to refuse the
request.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.3 setfinf — Change File Information Label 55

175 0O E.4.39 Is — List directory contents Rationale for changes to this section in

176

177
178

179
180
181
182
183
184
185

186
187
188
189
190
191
192

193
194

195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210

56

POSIX.2 is provided below:

There are two issues with regard to | s: handling of the alternate access
method flag, and displaying additional file information.

The access method flag is used to identify ACLs only. Consideration was given
to having it indicate MAC, information labels, and capabilities as well. How-
ever, on a system with MAC, all files will have a MAC label. Similarly, on a
system with information labels, all files will have information labels. For
these cases, the indicator would always be on, so it would provide no addi-
tional information. Privileges do not participate in access control decisions, so
it was decided that they should not be indicated by an access method flag.

The issue of extending | s to display additional information is difficult. The
utility | s already has a myriad of options, and many more would be needed for
security information. Also, the existing paradigm is one line per file. Given
the amount of security information (MAC label, information label, ACL, capa-
bilities) which can be on a file, restricting output to a single line is impractical.
Thus, no additional options are provided, but rather new utilities are added to
display the security relevant data.

E.4.43 mv — Move files Rationale for changes to this section in POSIX.2 is
provided below:

When a file is being renamed within a file system, the POSIX.2 standard
specifies that an error is generated if the renaming fails. This is adequate
from the perspective of MAC and ACL. When a file is copied (as a result of a
movement to a different file system), the POSIX.2 standard specifies the file
characteristics which are copied with the file. Requiring that the file MAC
label, information label, and capabilites be retained would require a discussion|
of appropriate privilege, which this standard avoids.

It would appear that the information label of the destination file could be
specified. However, the destination information label depends on whether the
destination file is on the same file system as the source file (in which case the
operation is a rename, most likely without any change in the information label
of the file), or on a separate file system (in which case the operation is a copy,
and the information label of the destination file is based on the information
label of the process which invoked mv as well as the information label of the
source file). Hence, this standard does not specify the information label of the
destination file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

211 O E.4.44 nohup — Invoke a utility immune to hangups Rationale for the

212

213
214
215

216
217

218
219

220
221
222
223
224
225
226

227
228
229
230
231
232

233
234

235
236

237
238
239

240
241

242
243
244

lack of changes to this section in POSIX.2 is provided below:

The nohup utility refers to specific permission bits when creating an output
file. However, because the bits are referred to as modifications to 2.9.1.4, the
other changes to 2.9.1.4 (to specify the file MAC label, etc.) are adequate.

0 E.4.48 pax — Portable archive interchange Rationale for changes to this

section in POSIX.2 is provided below:

There are three classes of changes to the pax utility: changes to the user inter-
face, changes to the backup format, and use of appropriate privilege.

Extensions to the interface to restore security attributes are provided as part
of this standard. Capital letters were selected to avoid conflicts with other
specification characters. Note that using one or more of these specification
characters may not cause restoration of the corresponding security attributes,
because the pax utility may still require appropriate privilege. Rather than
defining a separate specification character for access control lists, restoration
of ACLs is included with file permission bits.

The pax utility specifies the interface for creating a backup. Definition of the
backup format is outside the scope of POSIX.2, and hence changes to the
backup format are outside the scope of this standard. Note that the two
backup formats referenced in POSIX.2 (tar and cpio) are not extensible to add
security attributes. Hence, the capability to restore security attributes is only |
present if an implementation dependent backup format is used.

As with other utilities, this utility calls for appropriate privilege, which is not
further specified.

0 E.4.53 rm — Remove directory entries Rationale for the lack of changes to

this section in POSIX.2 is provided below:

The r m utility refers to file permissions, but without specifying permission
bits. Additionally, it allows for arbitrary failure of the directory entry removal.
Thus, the definition of the utility is general enough that no change is required.

E.4.59 stty — Set the options for a terminal Rationale for the lack of
changes to this section in POSIX.2 is provided below:

The stty utility exists only to provide access to the General Terminal Inter-
face. Thus, implementations should add restrictions to this utility consistent
with the restrictions placed on the GTI interfaces as noted previously.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

11.3 setfinf — Change File Information Label 57

245 [0 E.4.62 test — Evaluate expression Rationale for the lack of changes to this
246 section in POSIX.2 is provided below:

247 Some consideration was given to adding options to t est to compare MAC
248 labels, test for presence of ACLs, etc. However, there was no overwhelming
249 evidence that such options are necessary.

250 O E.5.2 at — Execute utilities at a later time Rationale for changes to this sec-
251 tion in POSIX.2 is provided below:

252 Particular implementations may wish to restrict use of this utility, or to
253 require additional authorization checks when the job is actually run. The form
254 of any such restrictions is left implementation defined.

255 For example, the system could reauthorize the user before the job is executed
256 to verify that the user is still authorized to run at the MAC label and with the |
257 capabilties in use at the time the job was queued.

258 [E.5.3 batch Rationale for the lack of changes to this section in POSIX.2 is pro-
259 vided below:

260 No changes are required for this utility, because bat ch is defined in terms of
261 at .

262 [0 E.5.5 crontab — Schedule periodic background work Rationale for
263 changes to this section in POSIX.2 is provided below:

264 Some implementations may wish to restrict use of this utility, or to require
265 additional authorization checks when the job is actually run. The form of any
266 such restrictions is left implementation defined.

267 For example, the system could reauthorize the user before the job is executed
268 to verify that the user is still authorized to run at the MAC label and with the |
269 capabilities in use at the time the job was queued.

270 0O E.5.17 mesg — Permit or deny messages Rationale for the lack of changes
271 to this section in POSIX.2 is provided below:

272 The POSIX.2 definition of this utility specifies “appropriate privilege.” This |
273 standard does not define what capability is required.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

58 E Revisions to the General Section

274 0O E.5.19 newgrp — Change to a new group Rationale for changes to this sec-
275 tion in POSIX.2 is provided below:

276 When newgrp changes the group identification, it is important to retain the
277 MAC label, information labels, and inherited capability flags along with the |
278 remainder of the process environment.

279 On traditional implementations, the program requires capabilities in order to |
280 change the group ID. Some implementations may require that the invoking |
281 process also have capabilities before the utility is executed.

282 This utility may prompt the user for a password. This is in some sense a form
283 of identification. However, it is only changing the group ID for a user who has
284 already been identified. Hence, this standard does not require any additional
285 restrictions.

286 [E.5.20 nice — Invoke a utility with an altered system scheduling prior-
287 ity Rationale for the lack of changes to this section in POSIX.2 is provided
288 below:

289 The POSIX.2a definition of this utility specifies “appropriate privilege.” This
290 standard does not define what privilege is required.

291 O E.5.23 ps — Report process status Rationale for the lack of changes to this
292 section in POSIX.2 is provided below:

293 The POSIX.2 definition of this utility specifies “appropriate privilege.” This
294 standard does not define what privilege is required. For example, a privilege

295 may be required to see processes belonging to a different user or operating at
296 MAC labels other than the MAC label of the invoking process.

1 E.8 Access Control Lists

E.8.1 User-Level Utilities

Command line interfaces, i.e., utilities, are provided to examine and manipulate
ACL entries. There were several major decisions with the utility interfaces. The
following subsections explain the rationale for these decisions.

QU i W [\]

E.8.1.1 Separate Utilities

The functionality specified in the get f acl utility could be added to the | s utility.
However, the | s interface is already sufficiently complex and adding an ACL
display capability to |'s would simply further complicate an overly complex

© 00 3 2]

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.8 Access Control Lists 59

10

11
12
13
14

15

16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51

60

interface.

As an alternative, a single utility interface could be provided which would include
all of the optional and non-optional utility interfaces specified in this standard.
Separate getfacl and setfacl utilities were specified in order to provide a
more modular solution.

E.8.1.2 Utility Names

The names of the get f acl and setfacl utilities were chosen to be as descrip-
tive as possible of the operations performed by the utilities. The names were also
chosen to be consistent with the equivalent utilities in the other sections of the
standard.

E.8.1.3 Ease of Use

ACL entries are manipulated by specification of a new external representation or
by specification of changes to the existing external representation. The external
representation of an ACL entry is not trivial. One of the goals of the working
group is to encourage the use of ACLs. This goal is accomplished by making
design decisions that are biased towards ease of use. In order to make the utility
interface easier to use, the output of the get f acl utility for a single file can be
used as input to the set f acl utility. The get f acl utility can be used to list the
ACLs of multiple files. However, the resulting output could not be used directly as
input to the set f acl utility because the get f acl output would contain multiple
entries for the file owner, file group, and other. An attempt to use this as input to
get f acl would result in an error because the resulting ACL would not be valid
as defined by the acl_valid() function.

The ACL mask entry adds significant complexity to the get f acl and set f acl
utility interfaces. This complexity is especially obvious in the set f acl utility. In
keeping with the goal to provide interfaces which are relatively easy to use, the
set f acl utility provides a basic set of options to manipulate ACLs including the
mask entry. The function of automatically generating (or recalculating) the per-
missions for the mask entry was chosen as the default operation for set f acl in
order to allow most users to manipulate ACLs without requiring direct, conscious
manipulation of the mask. For those cases where the mask has specifically been
altered to limit the permissions granted by additional entries, the —n option is
provided to allow users to manipulate the ACL without affecting the mask. These|
few operations for the mask should provide the basic capability of manipulating
ACLs in most environments. Certainly, additional options may be desirable, e.g.
an option to recalculate the mask but remove "extra" permissions that might be
granted to other entries by the mask recalculation. Such options were included in
a previous draft but were removed due to the overwhelming complexity which
they added to the interface. This includes the following:

(1) Default operation to recalculate the mask value but issue warning mes-
sages if any ACL entries might inadvertently grant additional access
based on the recalculation of the mask.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

52
53

54
55

56
57
58

59
60
61
62

63

64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86

87
88
89
90
91
92
93

(2) A -p option to remove any permissions from ACL entries which are lim-
ited by the mask value.

(3) A —c option to always recalculate the mask regardless of the effect on the
effective permissions granted by ACL entries.

The intent of this interface is to provide a basic set of utilities for manipulating
ACLs. Implementations may certainly extend the utility interfaces with these or
other options.

It is expected that most implementations will provide more sophisticated ACL
editors to improve ease of use. The working group considered specifying this edi-
tor but concluded that such an editor would primarily be a screen oriented user
interface and should not be required of conforming implementations.

E.8.1.4 Utility Options

Picking utility options is never an easy task. Options and option characters were
selected which were, at least, moderately meaningful while maintaining con-
sistency with the use of option characters by other utilities in existing implemen-
tations. The rationale for the inclusion of each of the utility options, and the selec-
tion of the option characters, for the set f acl utility are:

-b This option provides a simple method to reset an ACL to the three base
entries (the owner, owning group, and other). This operation could be
accomplished by reading the current ACL associated with the file, remov-
ing all extended ACL entries, and then updating the ACL with the result.
However, resetting a file’s ACL to the three base entries appears to be a
sufficiently significant and frequent operation as to justify an option to
quickly perform the operation. The —b option was chosen to indicate the
base ACL entries. The owning group entry is reset to the intersection of
the owning group entry and the mask entry by the —b option in order to
prevent an inadvertent increase in the effective permissions of the own-
ing group when removing the mask entry.

—-d This option indicates that the requested operations are to be performed
on the directory’s default ACL instead of the access ACL. This could be
implemented with another utility, e.g. a set defacl utility; however,
this would result in a second utility with exactly the same options as
setfacl. Since default and access ACL are manipulated in exactly the
same manner and with the same entry validations, a single utility with
an option to select the type of ACL is moderately simpler.

-k The -k option entirely removes a default ACL from a directory. This
option is necessary, in addition to the —b option, because the —b option
only removes the extended entries and leaves the 3 base entries. The -k
will completely remove the default ACL from the directory. This option
could be implemented as a separate utility; however, keeping the -k
option would allow the option to be used in conjunction with other
options in order to provide more flexibility for the user.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.8 Access Control Lists 61

94
95
96
97
98

99
100
101
102
103
104

105
106
107
108
109
110
111
112
113

114
115

116
117
118
119
120
121
122
123
124

125
126
127

128
129
130

131
132
133
134
135

136
137

62

-n

—X

The -k option is not allowed to operate on access ACLs since access ACLs
must always contain the required ACL entries corresponding to the file
class permissions. if the —k option were to be allowed on an access ACL,
then the target file could potentially be left an inconsistent state, i.e. with
NO file permission bits.

The -k option does not report an error if the set f acl utility is used to
remove a default ACL from a directory which does not contain a default
ACL. This is done in order to avoid potentially generating many errors
when the utility is used in conjunction with the f i nd utility to remove all
default ACL recursively from all directories within a filesystem hierar-
chy.

The —n option is used to indicate that a mask entry should not be gen-
erated nor should the permissions associated with the mask entry be
recalculated by the set f acl utility. A user (or an application) can set a
value for the mask which may restrict the permissions granted by addi-
tional ACL entries. The —n option allows the user to subsequently modify
the ACL without automatically changing the mask entry and, thereby,
inadvertently increasing the effective permissions of ACL entries. This
option appears to be most useful when manipulating an ACL on a file
whose permission bits are also being manipulated by chnod.

The —-m option is used to update existing entries and to add new entries
to the ACL.

The -M option is also used to update existing entries and to add new
entries to an ACL. However, the —M option allows entries to be contained
within a file (or to be obtained from standard input). This option is espe-
cially useful when using the getfacl utility in conjunction with the
set f acl utility to copy an ACL from one object to another; the output
from one utility can be piped directly into the input of the other. While
this capability could be obtained using the shell’s back quote substitu-
tion, this operation is expected to be frequent enough to justify an easy,
direct method of specification.

The —x option is used to remove existing entries from an ACL. The letter

x” was chosen instead of “r” in order to not conflict with the use of “r” to
indicate recursive operations in existing utilities.

The -X option is also used to remove existing entries from an ACL. How-
ever, like the —-M option, the —X option allows entries to be contained
within a file (or to be obtained from standard input).

Originally, the set f acl utility also contained the —i and -1 options to completely
replace an ACL with an entirely new ACL. These options were removed because
this operation is effectively provided by the combination of the —b option with the
-m option. Adding the additional options of —i and -1 was viewed as adding
unnecessary options and complexity to the utility.

The working group also considered specifying a single remove option with special
operands:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

138
139

140
141

142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161
162
163
164
165
166
167
168

169

170
171
172
173
174
175
176
177
178

-r entries This option removes the named ACL entries.
-r all This option removed all the ACL entries.

-r nonbase This option removed all the ACL entries except the base ACL
entries.

The various -r options were considered to be inconsistent with other options to
the utility and the syntax was considered to be overly complex. Separate options
were chosen as being slightly less complex and better overall syntax.

It was suggested that the get f acl utility support the option of retrieving both
the default and access ACL in one invocation of the utility. Specifically, it was
suggested that this operation be the default operation of the utility and that the
utility support the —a option for retrieving only the access ACL. While adding this
feature to the utility is certainly a convenience for the user (instead of having to
invoke getfacl twice), it also adds complexity to the use of the utility. This
would be particularly apparent since the default ACL would only be retrieved
when the utility was used to retrieve the ACLs on directories. Likewise, the
option should actually be to retrieve all ACLs associated with the file (instead of
just the default and access ACLs). Thus, any implementation defined ACLs asso-
ciated with the file should also be retrieved. As a default operation, this would
add significant complexity to the interface. Also, adding this option would make
the get f acl utility less consistent with the set facl utility unless set f acl

were to be modified to accept both the default and access ACLs as input. This
option would be best provided as an implementation defined extension to the get -

facl utility.

It was suggested that the set f acl utility allow an option to recursively set an
ACL throughout a filesystem hierarchy and to include an option to select the type
of files to which the ACL would be applied. These options are not provided in the
utility since the recursive selection of files based on type (as well as other criteria)]
is provided via the f i nd utility. Thus, the recursive setting of an ACL on selected
files can easily be accomplished via the combination of the fi nd and set f acl
utilities. This facility is not provided within set f acl in order to avoid the dupli-
cation of function in different utilities.

E.8.1.5 Evaluation Order of Option Characters

There are two general possibilities for the processing order of the options that
may be specified in an invocation of the set f acl utility. The options may either
be processed in a well defined order as specified by the standard or the options
may be processed in the order of the occurrence of the options in the invocation of
the utility. The standard could easily specify the apparent "most logical" evalua-
tion order for the options (e.g., the -k and -b options first followed by the -m (-M)
and —-x (-X) options). However, the options are processed in the order in which
they are specified by the user. This allows users the flexibility to determine the
order of the options to best meet their needs.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.8 Access Control Lists 63

179

180
181
182
183
184
185
186
187
188

189

190
191
192
193
194
195
196
197

198

199
200
201
202
203
204
205
206

207

208
209
210
211
212
213
214
215
216
217
218

64

E.8.1.6 ACL Entry Type Names

The working group considered using a lower case version of the programmatic
ACL entry tag types as the ACL entry tag types for the first field of the external
ACL entry representation, e.g., ACL_USER_OBJ => user_obj. This option has
the advantage of being easier to parse, than wusing user for both the
ACL_USER_OBJ and ACL_USER ACL entries. However, this option does not
lead to easy aliases, e.g., user_obj is difficult to alias, but user can be aliased as
u. The working group felt that the availability of easy aliases outweighs the com-
plexity introduced in the parsing and decided not to use the lower case versions of
the programmatic ACL entry tag types.

E.8.1.7 ACL Entry Permissions

The set f acl utility allows ACL entry permissions to be specified as a symbolic
string with an absolute or relative value. The format of this symbolic string is dif-
ferent from the format used when specifying permissions in the chmod() utility.
The format for the permissions was chosen to allow the output of the get f acl
utility to be used without modification as input to the set f acl utility. This will
allow a user to easily copy an ACL from one object to other objects. This addi-
tional functionality was believed to be more important than maintaining complete
consistency with the format of the permissions in chmod ().

E.8.1.8 Mask Entry Calculation

The getfacl and setfacl utilities are designed to make the existence of the
ACL mask entry as transparent as possible to the users of the utilities. For most
ACL manipulations, the permissions can be specified by the ACL entries and the
permissions associated with the mask entry will be automatically calculated and
reset to be the logical union of all of the permissions of all ACL entries in the file
group class. While recalculation of the mask value is the default operation, the —n
option is provided for the set f acl utility in order to allow users the ability to
directly manipulate the mask value, as desired.

E.8.1.8.1 Mask Calculation Algorithm and Unsafe Conditions

In an earlier draft, the set f acl utility attempted to determine the caller’s inten-
tions in changing ACL entries and would warn the user of situations which the
utility considered to be “unsafe” (i.e., when permissions could be granted to ACL
entries which the utility determined that the user might not be expecting). In
addition, the —p option was provided to actually remove such permissions from
the ACL and the —c option to always recalculate the mask regardless of the
utility’s interpretation of the user’s intentions. The mask recalculation algorithm
attempted to detect conditions which the utility considered unsafe entries while
minimizing, but not eliminating, false alarms. The algorithm also attempted to
limit the detection of unsafe cases to situations which were considered to be
highly unlikely user behavior.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

219
220
221
222
223
224

225
226

227
228

229
230

231
232

233
234

235
236

237
238
239
240
241
242
243

244
245

246
247

248
249
250
251
252
253

254
255
256
257
258

The actual algorithm for detecting such “unsafe” conditions is described below for
reference. Implementations may choose to add options which incorporate this (or
a similar) algorithm in the set f acl utility. The algorithm specifies changes to
the ACL, but those changes would only be made permanent in the ACL after all
checks had been made and the operation determined to be “safe”. All operations
are performed only on ACL entries that are members of the file group class.

The algorithm is specified below in programmatic form:
(1) Retrieve the existing ACL of the object.

(2) Perform all requests to remove entries and requests to reduce the permis-
sions of existing entries.

(3) Calculate the union of the actual permissions of all remaining entries.
(4) Calculate the union of the effective permissions of all remaining entries.

(5) Determine which permissions differ between the actual and effective
rights (logical XOR of results of steps 3 and 4).

(6) Perform all requests to add new entries to the ACL and all requests to
increase the permissions of existing entries.

(7) Calculate the union of these newly granted permissions and the old effec-
tive permissions (step 4). This is the candidate new mask value.

(8) If there are any permissions in the candidate new mask that are also in
the permissions that differ between the original actual and effective
rights (step 5), applying the candidate new mask would unexpectedly
grant some new right that the user did not intend. Unless the user
specified one of the options —c, —p, or —n, this condition shall generate an
error and the ACL will not be modified. If this condition does not hold,
then apply the candidate new mask as the new mask.

The algorithm avoids false alarms that would occur if the new mask were simply
calculated to be the logical OR of all the entries of the new file group class.

The following is an example of how false alarms could be avoided.
Consider an ACL with the following entries:

user:rwx

mask::r-x

user:userl:rwx #effective:r-x
user:user2:rwx #effective:r-x
group::r-x

other::---

If userl’s permissions were changed to r-x permission, a simple recalculation
using acl_calc_mask() would result in changing the mask to rwx which would
inadvertently grant w permission to user2. However, the algorithm specified
above detects that removing userl’s w permission does not require altering the
mask.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.8 Access Control Lists 65

259
260
261
262
263

264
265
266
267
268
269

270
271

272
273

274
275
276
277

278
279
280

281
282
283
284
285
286
287

288

289
290
201
292

66

The —p option was provided to allow the user to remove ineffective permissions.
The —c option was included in order to allow users to always request uncondi-
tional recomputation of the mask regardless of any unsafe conditions. As this
option could be quite dangerous, it was suggested that an implementation issue a
warning message if any unsafe conditions were detected.

Notice that the mask entry was only relevant when it had been “lowered” to actu-
ally reduce the permissions granted by one or more entries within the ACL. A
“lowered” mask could only occur for three reasons. The first reason is that the
mask may have been specified to a value less than some of the permissions in the
default ACL (such as execute permission on a data file) when an object was
created.

The second reason is that a program may have temporarily lowered the mask to
lock out other users from the file.

The third reason is that the user may have lowered the mask using the chmod()
utility explicitly.

In all cases, the user of the set f acl utility would need to know that the mask
had been lowered, understand why the mask had been lowered, and would be
required to be able to select the appropriate options for the utility in order to
achieve the desired results.

Since it had been suggested that implementations issue warning messages for the
detection of "unsafe" conditions, it was also suggested that such implementations
also would provide a —s option that would suppress the messages.

The detection of “unsafe” conditions and the attempted interpretation of the user’s
intention in manipulating the mask added significant complexity to the set f acl
interface. This type of operation and the resulting interface were considered
entirely too complex for users to understand or use effectively. As such, the —c and
—-p options were removed; and the default operation was changed to simply recal-
culate the mask. Likewise, the mask recalculation was changed to be simply the
union of the permissions in all ACL entries within the file group class.

E.8.1.8.2 Mask Calculation and chmod

It was considered to allow the ACL mask entry to be set only by the chnod utility
and not be modifiable by the setfacl utility. This restriction was rejected
because it would have made copying ACLs from one file to another too difficult by
requiring the use of the chnod utility as well as the ACL utilities.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

23

24
25
26
27
28
29
30
31
32
33

34
35
36
37

38
39
40

E.10 Capability %

E.10.1 Capability-Related Utilities

These utilities were determined to be the minimal set necessary for the determi-
nation and establishment of the capability attributes of files.

These is an argument that such utilities are administrative in nature and there-
fore outside of the scope of this working group. The working group noted, how-
ever, that installation scripts and programs are themselves portable applications
that will need to work across implementations, and these utilities will be required
to support them. In addition, should the argument be accepted, there are
sufficient reasons for adopting standards for these types of utilities to persuade
other existing working groups to just adopt them as part of their standard. Since
the only practical result of not specifying these utilities is to merely delay their
specification, we felt that they would best be specified by this committee.

Some responders to the initial ballot felt that there should be commands to assign
capabilities to users as well. Since POSIX does not yet specify a user database or
identification and authentication system, we felt that inclusion of such commands
was premature. In addition, a few people proposed examples of systems which
would conform to this standard where no capability data was directly associated
with users. For these cases, requiring such commands would be an undue burden
on the implementation. If an implementation does wish to assign capabilities to
users, however, we believe that extending the syntax of the two commands
presented here would be simple and straightforward.

E.10.1.1 Get and Set the Capability State of a Subject or Object

The getfcap, getpcap and setfcap utilities were included as a part of the
standard primarily to support the definition of a standard, cross-implementation
user interface for the administration of file capabilities. Increasingly, secure
applications will need to have a standard means of being installed so that opera-
tors that do not necessarily have a strong background in security can just run a
script supplied to them by a security administrator. In addition, one of the neces-
sary functions of a security administrator is to periodically check the security
related attributes of files and programs to ensure that they have not been tam-
pered with. The standardization of utilities that support setting and display of file
capability attributes is therefore considered to be necessary.

The grammar chosen for representing, setting and modifying capability states is a
modified version of that used by chnmod for the symbolic representation of mode
bit operations. This representation was chosen because it is compact and is fami-
liar to current users of POSIX systems.

It was decided not to add to the functionality of existing utilities or system func-
tions in this area; specifically, the stat() system function and the | s utilities are
already overburdened and complex.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.10 Capability 67

—
S OO0 Ol W [\

11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29
30
31

32

33
34
35
36

37
38
39
40
41

68

E.11 Mandatory Access Control

E.11.1 General Overview

The following utilities have been added to support mandatory access control
(MAC): getfmac, setfrac, and get pmac. These utilities were determined to
be the minimal set necessary for the determination and establishment of MAC
labels for files and processes. No utility is provided to allow users to modify the
MAC label of an executing process for two reasons: (1) there is no precedent in
POSIX.2 for utilities that modify the attributes (e.g., user ID or umask) of existing
processes, and (2) no compelling argument has ever been put forward for why
such a utility would be useful.

For each utility, the code is not derived from any existing system, and no source
code was examined. None of these interfaces depend on a precise definition of
what constitutes a MAC label provided. That is, the format of the MAC label
argument to setf nac is not specified, nor is the format of the MAC labels writ-
ten to standard out by getfnac and get pmac. This is because POSIX.1e does
not constrain implementations in terms of the allowable human-readable
representations of MAC labels. (As a practical matter, most implementations
probably should not constrain them: the human-readable representations of MAC
labels will typically be administrator defined.)

Because the precise format of the text representation of MAC labels is not
specified, both getfmnmac and get pnac only loosely specify the location of the
label within the output stream. Until standards for label syntax are specified,
utilities (especially standard utilities such as awk or gr ep) cannot parse the out-
put of these utilities. Therefore, the output of these utilities are primarily useful
only for display to users. Specifying a standard for the syntax of the text
representation of labels was considered, but rejected for inclusion in this stan-
dard.

Note that conforming implementations may choose to provide a more rigorously
specified output format to assist implementation-specific parsing utilities, or pro-
vide a visually more easily understood output format through the use of an addi-
tional argument.

E.11.2 Separate Utilities

The working group considered adding the functionality specified in the get f mac
to | s. However, the working group strongly feels that the | s interface is already
sufficiently complex and that adding MAC label display capabilities to | s would
further complicate an overly complex interface.

The working group also considered designing a single utility interface that
included all of the utility interfaces specified in this standard. However, one of
the goals of the working group is to produce a modular set of interfaces. Since the
working group felt that this solution does not fit into a modular model, the group
discarded this solution.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

42

43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64

E.11.3 Label Input and Output

As noted above, the format of the labels produced by get f mac, set f mac, and
get pmac are not precisely defined. Nevertheless, in order to provide support for
portable applications, it was felt that these utilities should be required to intero-
perate. This is necessary to allow portable applications to use the output of the
utilities, and portable shell scripts to reuse the labels output from the utilities
(e.g., in save-alter-restore algorithms that temporarily modify file labels). There-
fore, the specification requires that the labels output by get f mac and get prmac
must be in a format suitable for re-input to the set f mac utility. Similarly, the
labels output by get f mac and get pmac must be suitable for re-input to the
mac_from_text() function defined in section 26.3.7 of POSIX.le. Finally, we
require that the labels produced by the mac_to_text() defined in section 26.3.17 of
POSIX.1le. must be suitable for re-input to the set f mac utility. |

E.11.4 Utility use of Capabilities |

Actual implementation of utilities such as set f mac may require the utility to
possess appropriate privilege to perform its function, but this standard is mute on
whether privilege is required or the specific capabilties which may be required.
This is an interface specification for the utilities. As such, the interface to these
utilities must be specified, as must their behavior. Their implementation, how-
ever, is outside the scope of this standard. A conforming implementation could
certainly implement these utilities without using POSIX interfaces. Whatever
(native) interfaces are used to implement the utility may not require capabilities, |
or if they do, they may not require POSIX capabilities. Therefore, specifying that|
capabilities are required may, in at least some cases, be incorrect. %

E.12 Information Labeling

E.12.1 General Overview

The following utilities have been added to support information labeling: get -
finf, setfinf, and getpinf. These utilities were determined to be the
minimal set necessary for the determination and establishment of information
labels for files and processes. No utility is provided to allow users to modify the
information label of an executing process for two reasons: (1) there is no pre-
cedent in POSIX.2 for utilities that modify the attributes (e.g., user ID or umask)
of existing processes, and (2) no compelling argument has ever been put forward
for why such a utility would be useful.

For each utility, the code is not derived from any existing system, and no source
code was examined. None of these interfaces depend on a precise definition of
what constitutes an information label. That is, the format of the information
label argument to set fi nf is not specified, nor is the format of the information
labels written to standard out by getfinf and getpinf. This is because
POSIX.1e does not constrain implementations in terms of the allowable human-

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 69

18
19
20

21
22
23
24
25
26
27
28

29
30
31
32

33

34
35
36
37

38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56

70

readable representations of information labels. (As a practical matter, most
implementations probably should not constrain them: the human-readable
representations of information labels will typically be administrator defined.)

Because the precise format of the text representation of information labels is not
specified, both getfinf and get pi nf only loosely specify the location of the
label within the output stream. Until standards for label syntax are specified,
utilities (especially standard utilities such as awk or grep) cannot parse the out-
put of these utilities. Therefore, the output of these utilities are primarily useful
only for display to users. Specifying a standard for the syntax of the text
representation of labels was considered, but rejected for inclusion in this stan-
dard.

Note that conforming implementations may choose to provide a more rigorously
specified output format to assist implementation-specific parsing utilities, or pro-
vide a visually more easily understood output format through the use of an addi-
tional argument.

E.12.2 Separate Utilities

The working group considered adding the functionality specified in the get f i nf
to | s. However, the working group strongly feels that the | s interface is already
sufficiently complex and that adding information label display capabilities to | s
would further complicate an overly complex interface.

The working group also considered designing a single utility interface that
included all of the utility interfaces specified in this standard. However, one of
the goals of the working group is to produce a modular set of interfaces. Since the
working group felt that this solution does not fit into a modular model, the group
discarded this solution.

E.12.3 Label Input and Output

As noted above, the format of the labels produced by getfinf, setfinf, and
get pi nf are not precisely defined. Nevertheless, in order to provide support for
portable applications it was felt that these utilities must interoperate both with
themselves, and with the relevant functions defined in section 27 of POSIX.1e.
This is necessary to allow portable applications to use the labels produced by the
utilities, portable shell scripts to use the labels output by applications using the
applicable IL functions and to reuse the labels output from the utilities (e.g., in
save-alter-restore algorithms that temporarily modify file labels), etc. Therefore,
the specification requires that the labels output by get fi nf and get pi nf must
be in a format suitable for re-input to the setfinf utility and to the
inf from_text() function defined in section 27.3.9 of POSIX.le. Similarly, we
require that the labels produced by the inf to_text() function defined in section
27.3.17 of POSIX.1e must be suitable for re-input to the set f i nf utility.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E Revisions to the General Section

Annex F
(informative)

Ballot Instructions

This annex will not appear in the final standard. It is included in the draft to pro-
vide instructions for balloting that cannot be separated easily from the main docu-
ment, as a cover letter might.

It is important that you read this annex, whether you are an official
member of the PSSG Balloting Group or not; comments on this draft are
welcomed from all interested technical experts.

Summary of Draft 17 Instructions

This is a recirculation on the P1003.2¢ ballot. The procedure for a recirculation is
described in this annex. Because this is a recirculation comments may only be
provided concerning sections that have changed, sections affected by those
changes, or on rejected comments from the previous ballot.

Send your ballot and/or comments to:

IEEE Standards Office

Computer Society Secretariat

ATTN: PSSG Ballot (Carol Buonfiglio)
P.O. Box 1331

445 Hoes Lane

Piscataway, NJ 08855-1331

It would also be very helpful if you sent us your ballot in machine-readable form.
Your official ballot must be returned via mail to the IEEE office; if we receive only
the e-mail or diskette version, that version will not count as an official document.
However, the online version would be a great help to ballot resolution. Please
send your e-mail copies to the following address:

casey@sgi.com

or you may send your files in ASCII format on DOS 3.5 inch formatted diskettes
(720Kb or 1.4Mb), or Sun-style QIC-24 cartridge tapes to:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 71

Casey Schaufler

Silicon Graphics

2011 North Shoreline Blvd.
P.O. Box 7311

Mountain View, CA 94039-7311

Background on Balloting Procedures

The Balloting Group consists of approximately eighty technical experts who are
members of the IEEE or the IEEE Computer Society; enrollment of individuals in
this group has already been closed. There are also a few “parties of interest” who
are not members of the IEEE or the Computer Society. Members of the Balloting
Group are required to return ballots within the balloting period. Other individu-
als who may happen to read this draft are also encouraged to submit comments
concerning this draft. The only real difference between members of the Balloting
Group and other individuals submitting ballots is that affirmative ballots are only
counted from Balloting Group members who are also IEEE or Computer Society
members. (There are minimum requirements for the percentages of ballots
returned and for affirmative ballots out of that group.) However, objections and
nonbinding comments must be resolved if received from any individual, as fol-
lows:

(1) Some objections or comments will result in changes to the standard. This
will occur either by the republication of the entire draft or by the publica-
tion of a list of changes. The objections/comments are reviewed by a
team from the POSIX Security working group, consisting of the Chair,
Vice Chair, Technical Editor, and a group of Technical Reviewers. The
Chair will act as the Ballot Coordinator. The Technical Reviewers each
have subject matter expertise in a particular area and are responsible for
objection resolution in one or more sections.

(2) Other objections/comments will not result in changes.

(a) Some are misunderstandings or cover portions of the document
(front matter, informative annexes, rationale, editorial matters,
etc.) that are not subject to balloting.

(b) Others are so vaguely worded that it is impossible to determine
what changes would satisfy the objector. These are referred to as
Unresponsive. (The Technical Reviewers will make a reasonable
effort to contact the objector to resolve this and get a newly worded
objection.) Further examples of unresponsive submittals are those
not marked as either Objection, Comment, or Editorial; those that
do not identify the portion of the document that is being objected to
(each objection must be separately labeled); those that object to
material in a recirculation that has not changed and do not cite an
unresolved objection; those that do not provide specific or general
guidance on what changes would be required to resolve the objec-
tion.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

72 F Ballot Instructions

(¢) Finally, others are valid technical points, but they would result in
decreasing the consensus of the Balloting Group. (This judgment is
made based on other ballots and on the experiences of the working
group through over seven years of work and fifteen drafts preceding
this one.) These are referred to as Unresolved Objections. Sum-
maries of unresolved objections and their reasons for rejection are
maintained throughout the balloting process and are presented to
the IEEE Standards Board when the final draft is offered for appro-
val. Summaries of all unresolved objections and their reason for
rejection will also be sent to members of the Balloting Group for
their consideration upon a recirculation ballot. (Unresolved objec-
tions are not circulated to the ballot group for a re-ballot.)
Unresolved objections are only circulated to the balloting group
when they are presented by members of the balloting group or by
parties of interest. Unsolicited correspondence from outside these
two groups may result in draft changes, but are not recirculated to
the balloting group members.

Please ensure that you correctly characterize your ballot by providing one
of the following:

(1) Your IEEE member number
(2) Your IEEE Computer Society affiliate number

(3) If (1) or (2) don’t apply, a statement that you are a “Party of
Interest”

Ballot Resolution

The general procedure for resolving ballots is:

(1)
(2)

(3
(4)

The ballots are put online and distributed to the Technical Reviewers.

If a ballot contains an objection, the balloter may be contacted individu-
ally by telephone, letter, or e-mail and the corrective action to be taken
described (or negotiated). The personal contact will most likely not occur
if the objection is very simple and obvious to fix or the balloter cannot be
reached after a few reasonable attempts. Repeated failed attempts to eli-
cit a response from a balloter may result in an objection being considered
unresponsive, based on the judgment of the Ballot Coordinator. Once all
objections in a ballot have been resolved, it becomes an affirmative ballot.

If any objection cannot be resolved, the entire ballot remains negative.

After the ballot resolution period the technical reviewers may chose to
either re-ballot or recirculate the ballot, based on the status of the stan-
dard and the number and nature of outstanding (i.e., rejected or
unresolved) objections. The ballot group may or may not be reformed at
this time. If a reballot is chosen, the entire process of balloting begins
anew. If a recirculation is chosen, only those portions affected by the pre-
vious ballot will be under consideration. This ballot falls into this latter
category

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 73

(5) On a recirculation ballot, the list of unresolved objections, along with the
ballot resolution group’s reasons for rejecting them will be circulated to
the existing ballot group along with a copy of the document that clearly
indicates all changes that were made during the last ballot period. You
have a minimum of ten days (after an appropriate time to ensure the
mail got through) to review these two documents and take one of the fol-
lowing actions:

(a) Do nothing; your ballots will continue to be counted as we have
classified them, based on items (3) and (4).

(b) Explicitly change your negative ballot to affirmative by agreeing to
remove all of your unresolved objections.

(c) Explicitly change your affirmative ballot to negative based on your
disapproval of either of the two documents you reviewed. If an
issue is not contained in an unresolved objection or is not the result
of a change to the document during the last ballot resolution period,
it is not allowed. Negative ballots that come in on recirculations
cannot be cumulative. They shall repeat any objections that the
balloter considers unresolved from the previous recirculation. Bal-
lots that simply say “and all the unresolved objections from last
time” will be declared unresponsive. Ballots that are silent will be
presumed to fully replace the previous ballot, and all objections not
mentioned on the most current ballot will be considered as success-
fully resolved.

(6) Rather than reissue the entire document, a small number of changes may
result in the issuance of a change list rather than the entire document
during recirculation.

(7) A copy of all your objections and our resolutions will be mailed to you.

(8) If at the end of a recirculation period there remain greater than seventy-
five percent affirmative ballots, and no new objections have been
received, a new draft is prepared that incorporates all the changes. This
draft and the unresolved objections list go to the IEEE Standards Board
for approval. If the changes cause too many ballots to slip back into
negative status, another resolution and recirculation cycle begins.

Balloting Guidelines

This section consists of guidelines on how to write and submit the most effective
ballot possible. The activity of resolving balloting comments is difficult and time
consuming. Poorly constructed comments can make that even worse.

We have found several things that can be done to a ballot that make our job more
difficult than it needs to be, and likely will result in a less than optimal response
to ballots that do not follow the form below. Thus it is to your advantage, as well
as ours, for you to follow these recommendations and requirements.

If a ballot that significantly violates the guidelines described in this section comes
to us, we may determine that the ballot is unresponsive.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

74 F Ballot Instructions

H

If we recognize a ballot as “unresponsive,” we will try to inform the balloter as
soon as possible so he/she can correct it, but it is ultimately the balloter’s respon-
sibility to assure the ballot is responsive. Ballots deemed to be “unresponsive”
may be ignored in their entirety.

Some general guidelines to follow before you object to something:

(1) Read the Rationale section that applies to the troublesome area. In gen-
eral there is a matching informative section in the Rationale Annex for
each normative section of the standard. This rationale often explains
why choices were made and why other alternatives were not chosen.

(2) Read the Scope, section 1, to see what subset of functionality we are try-
ing to achieve. This standard does not attempt to be everything you ever
wanted for accomplishing secure software systems. If you feel that an
additional area of system interface requires standardization, you are
invited to participate in the security working group which is actively
involved in determining future work.

(3) Be cognizant of definitions in section 2. We often rely in the document on
a precise definition from section 2 which may be slightly different than
your expectation.

Typesetting is not particularly useful to us. Also please do not send handwritten
ballots. Typewritten (or equivalent) is fine, and if some font information is lost it
will be restored by the Technical Editor in any case. You may use any word pro-
cessor to generate your objections but do not send [nt]rof f (or any other word
processor) input text. Also avoid backslashes, leading periods and apostrophes in
your text as they will confuse our word processor during collation and printing of
your comments. The ideal ballot is formatted as a “flat ASCII file,” without any
attempt at reproducing the typography of the draft and without embedded control
characters or overstrikes; it is then printed in Courier (or some other typewriter-
like) font for paper-mailing to the IEEE Standards Office and simultaneously e-
mailed to the Working Group Ballot Coordinator at the following email address.

casey@sgi.com

Don’t quote others’ ballots. Cite them if you want to refer to another’s ballot. If
more than one person wants to endorse the same ballot, send just the cover sheets
and one copy of the comments and objections. [Note to Institutional Representa-
tives of groups like X/Open, OSF, Ul, etc.: this applies to you, too. Please don’t
duplicate objection text with your members.] Multiple identical copies are easy to
deal with, but just increase the paper volume. Multiple almost-identical ballots
are a disaster, because we can’t tell if they are identical or not, and are likely to
miss the subtle differences. Responses of the forms:

— “I agree with the item in <someone>’s ballot, but I'd like to see this done
instead”

— “I am familiar with the changes to f 00 in <someone>’s ballot and I would
object if this change is [or is not] included”

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 75

are very useful information to us. If we resolve the objection with the original
balloter (the one whose ballot you are referencing), we will also consider yours to
be closed, unless you specifically include some text in your objection indicating
that should not be done.

Be very careful of “Oh, by the way, this applies <here> too” items, particularly if
they are in different sections of the document that are likely to be seen by dif-
ferent reviewers. They are probably going to be missed! Note the problem in the
appropriate section, and cite the detailed description if it’s too much trouble to
copy it. The reviewers don’t read the whole ballot. They only read the parts that
appear in the sections that they have responsibility for reviewing. Particularly
where definitions are involved, if the change really belongs in one section but the
relevant content is in another, please include two separate comments/objections.

Please consider this a new ballot that should stand on its own. Please do not
make backward references to your ballots for the previous draft. Include all the
text you want considered here, because the Technical Reviewer will not have your
old ballot. (The old section and line numbers won’t match up anyway.) If one of
your objections was not accepted exactly as you wanted, it may not be useful to
send in the exact text you sent before; read our response to your objection (you
will receive these in a separate mailing) and the associated Rationale section and
come up with a more compelling (or clearly-stated) justification for the change.

Please be very wary about global statements, such as “all of the arithmetic func-
tions need to be defined more clearly.” Unless you are prepared to cite specific
instances of where you want changes made, with reasonably precise replacement
language, your ballot will be considered unresponsive.

Ballot Form

The following form is strongly recommended. We would greatly appreciate it if
you sent the ballot in electronic form in addition to the required paper copy. Our
policy is to handle all ballots online, so if you don’t send it to us that way, we have
to type it in manually. See the first page of this Annex for the addresses and
media. As you’ll see from the following, formatting a ballot that’s sent to us
online is much simpler than a paper-only ballot.

The paper ballot should be page-numbered, and each page should contain the
name, e-mail address, and phone number(s) of the objector(s). The electronic copy
of the ballot should only have it once, in the beginning. Please leave adequate (at
least one inch) margins on both sides.

Don’t format the ballot as a letter or document with its own section numbers.
These are simply confusing. As shown below, it is best if you cause each objection
and comment to have a sequential number that we can refer to amongst ourselves
and to you over the phone. Number sequentially from 1 and count objections,
comments, and editorial comments the same; don’t number each in its own range.

We recognize three types of responses:

Objection A problem that must be resolved to your satisfaction prior to your
casting an "affirmative" vote for the document.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

76 F Ballot Instructions

Comment A problem that you might want to be resolved by the reviewer, but
which does not in any way affect whether your ballot is negative or
positive. Any response concerning the pages preceding page 1 (the
Front matter), Rationale text with shaded margins, Annexes,
NOTES in the text, footnotes, or examples will be treated as a non-
binding comment whether you label it that way or not. (It would
help us if you’d label it correctly.)

Editorial A problem that is strictly an editorial oversight and is not of a techn-
ical nature. Examples are: typos; misspellings; English syntax or
usage errors; appearances of lists or tables; arrangement of sections,
clauses, and subclauses (except where the location of information
changes the optionality of a feature).

To help us in our processing of your objections and comments, we are requiring
that all comments, objections and editorial comments meet the following specific
format. (We know that the format defined below contains redundant information
but it has become a de facto standard used by many different POSIX standard
ballots. It is felt that it is better to continue to use this format with the redun-
dancies rather than to create a new format just for 1003.1e and P1003.2¢)

non

Separate each objection/comment with a line of dashes ("-"), e.g.,

Precede each objection/comment with two lines of identifying information:

The first line should contain:
@ <section>. <clause> <code> <seqno>
where:
@ At-sign in column 1 (which means no @’s in any other column 1’s).

<section> The major section (chapter or annex) number or letter in column
3. Use zero for Global or for something, like the frontmatter, that
has no section or annex number.

<clause> The clause number (second-level header). Please do not go deeper
than these two levels. In the text of your objection or comment,
go as deep as you can in describing the location, but this code line
uses two levels only.

<code> One of the following lowercase letters, preceded and followed by
spaces:

0 Objection.
¢ Comment.

e Editorial Comment.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 77

<seqno> A sequence number, counting all objections and comments in a
single range.

The second line should contain:

<seqno>. Sect <sectno> <type>. page <pageno>, |ine <lineno>:
where:
<seqno> The sequence number from the preceding line
<sectno> The full section number. (Go as deep as you can in describing the
location.)
<type> One of the following key words/phrases, preceded and followed by
spaces:
OBJECTI ON
COMVENT

EDI TORI AL COMVENT
<pageno> The page number from the document.

<lineno> The line number or range of line numbers that the
object/comment relates to.

For each objection, comment, or editorial comment, you should provide a clear
statement of the problem followed by the action required to solve that problem.

Pr obl em

A clear statement of the problem that is observed, sufficient for others to under-
stand the nature of the problem. (Note that you should identify problems by sec-
tion, page, and line numbers. This may seem redundant, but if you transpose a
digit pair, we may get totally lost without a cross-check like this. Use the line
number where the problem starts, not just where the section itself starts; we
sometimes attempt to sort objections by line numbers to make editing more accu-
rate. If you are referring to a range of lines, please don’t say “lines 10xx;” use a
real range so we can tell where to stop looking. Please try to include enough con-
text information in the problem statement (such as the name of the function or
command) so we can understand it without having the draft in our laps at the
time. (It also helps you when we e-mail it back to you.)

Acti on:

A precise statement of the actions to be taken on the document to resolve the
objection above, which if taken verbatim will completely remove the objection.

If there is an acceptable range of actions, any of which will resolve the problem for
you if taken exactly, please indicate all of them. If we accept any of these, your
objection will be considered as resolved.

If the Action section is omitted or is vague in its solution, the objection may be
reclassified as a nonbinding comment. The Technical Reviewers, being human,
will give more attention to Actions that are well-described than ones that are

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

78 F Ballot Instructions

vague or imprecise. The best ballots of all have very explicit directions to substi-
tute, delete, or add text in a style consistent with the rest of the document, such
as:

Del ete the sentence on lines 101-102:

"The inplenentation shall not ... or standard error."
On line 245, change "shall not" to "should not".

After line 711, add:

-c Calculate the mask pernissions and update the mask.
Some examples of poorly-constructed actions:

Rermove all features of this command that are not supported by BSD.
Add -i.

Make this command nore efficient and reliable.

Use some other flag that isn’t so confusing.

I don’t understand this section.

Specify a value--1 don’t care what.

Sample Response:

Joseph Bal l oter (999) 123- 4567 page 4 of 17.
EMAI L: jnmb@nyconp. com FAX: (999) 890- 1234

@ 1.1 0 23

23. Sect 1.1 OBJECTION. page 7, line 9:

Pr obl em

The current draft describes one the nmechanisns specified in it as
"Least Privilege" which is incorrect. "Least Privilege" is a
general principle related to access control rather than a nmechani sm
In fact, the definition given in the standard (p. 91, |I. 274)
calls it a principle rather than a nmechani sm

Acti on:

Replace line 9 with: "(3) Enforcenent of Least Privilege"

@ 3.1 0 24

24. Sect 3.1 OBJECTION. page 27, line 13:

Pr obl em

"during process of changing ACL" is vague.
Could be read as the duration fromacl _read through acl_wite.

Acti on:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 79

Shoul d state "while ACL is being witten (acl_wite)".

@ 3.3 e 25
25. Sect 3.3.1 EDI TORI AL COMMVENT. page 29, line 68:

Pr obl em

The two previous sentences describe the "ACL_USER OBJ entry" and
the "ACL_GROUP_OBJ entry". Line 68 describes "ACL_OTHER OBJ",
the word "entry" should be added for consi stency.

Acti on:
change "ACL_OTHER OBJ" to "ACL_OTHER OBJ entry"

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

80 F Ballot Instructions

Sample Response (continued):

Joseph Bal | ot er (999) 123- 4567 page 5 of 17.
EMAI L: j mb@myconp. com FAX: (999) 890- 1234
@ 4.5 c 26

26. Sect 4.5.1.1 COMVENT. page 92, |ine 836:
Probl em

There is no introduction to table 4-1.

Acti on:

Add before line 836 "The aud ev_info t structure shall contain at
|l east the following fields:"

@ 6.5 o 27
27. Sect 6.5.7.2 OBJECTION. page 181, |ine 449-450:

Pr obl em

Can this "nust" be tested ?

Is this really needed since the format of the |abel is undefined

and no functions are provided to access the individual conponents
(so that a conparison could be made). This seens to be a coment

that could just as easily be applied to npst other mac functions,
say mac_freel abel for exanple.

Acti on:

Suggest either nmoving this into the MAC i ntroductory secti on,
striking or changing "nust" to "should" or "are advised".

Thank you for your cooperation and assistance in this important balloting pro-
cess.

Lynne M. Ambuel
Chair, POSIX Security Working Group

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

E.12 Information Labeling 81

Identifier Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index

83

84

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index

85

86

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index

88

Topical Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Topical Index

Contents

SECTION

Section 1: Revisions to the General Section

Section 2: Revisions to Terminology and General Requirements
Section 4: Revisions to Execution Environment Utilities
Section 5: POSIX.2— Revisions to User Portability Utilities .

Section 8: Access Control Lists .
8.1 getfacl — Get ACL Information .
8.1.1 Synopsis . .
8.1.2 Description
8.1.3 Options
8.1.4 Operands .
8.1.5 External Influences
8.1.6 External Effects
8.1.7 Extended Description
8.1.8 Exit Status
8.1.9 Consequence of Errors
8.2 setfacl — Set Access Control List
8.2.1 Synopsis
8.2.2 Description
8.2.3 Options
8.2.4 Operands .
8.2.5 External Influences
8.2.6 [External Effects
8.2.7 Extended Description
8.2.8 Exit Status .
8.2.9 Consequence of Errors

Section 9: Capability

9.1 getfcap — Get the Capablhty State of a F11e
9.1.1 Synopsis e e e e
9.1.2 Description
9.1.3 Options
9.1.4 Operands .
9.1.5 External Influences
9.1.6 External Effects
9.1.7 Extended Description
9.1.8 Exit Status
9.1.9 Consequence of Errors

9.2 getpcap — Get the Capability State of a Process
9.2.1 Synopsis e e e e e e
9.2.2 Description

WITHDRAWN DRAFT. All Rights Reserved by IEEE.

Preliminary—Subject to Revision.

ii

PAGE

11
13

15
15
15
15
15
16
16
17
17
19
19
19
19
19
20
21
21
22
22
24
24

25
25
25
25
25
26
26
27
27
28
28
28
28
28

SECTION PAGE

9.23 Options . « v ¢« v 4 e ¢ 4 e e e e e e« « « . 28
924 Operands « . « « + o o o o o 4 4 e e e e e . 29
9.2.5 External Influences « + . . . 29
9.2.6 External Effects 30
9.2.7 Extended Description 30
928 ExitStatus 80
9.2.9 Consequence of Errors . . e e e+ e e « « e« « 30
9.3 setfcap — Set Capability State of a Flle - 4]
931 SynopsiS .« .+ « ¢ ¢ 4 4 e e e 4 4 e e e o « o« 30
9.32 Description . . + .+ ¢« « ¢ ¢« ¢ 4 o+ e« o« . 31
933 Options . . + ¢« + v ¢ ¢ 4 e e e e e e e .. 31
934 Operands . . « « v ¢ ¢« ¢ o « + 4 o« o+ W« o« . . 381
9.3.5 External Influences 32
9.3.6 External Effects 33
9.3.7 Extended Description + ¢« « « « . . 33
9.3.8 Exit Status . . . - 3
9.3.9 Consequences of Errors . 12

Section 10: Mandatory Access Control « 35
10.1 getfmac — Get the MAC Label ofaFile 35
10.1.1 SynopsisS « o« « « o o o« o o o o o o o o « o« « 35
10.1.2 Description . .+ « + « ¢« « ¢« ¢ o o« o « « « « o« 35
10.1.3 Options + « ¢« « & ¢« « & « & o o« o o « + « « 35
10.1.4 Operands . . .« +. + ¢« & & « &« o o« o« « « « « . 36
10.1.5 External Influences 36
10.1.6 External Effects 37
10.1.7 Extended Description« . « ¢« « « « « o o 37
10.1.8 ExitStatus . + + + ¢« ¢« ¢ ¢ ¢ ¢ o o e e . . . 37
10.1.9 Consequence of Errors . . - 1

10.2 getpmac — Get Text Form Of Current Process S MAC
Label . . « + « ¢ ¢ ¢ v ¢ ¢ v 4 e e e e e e e . 37
10.2.1 Synopsis « « « « o o o 0 o 4 e e e e o« o o 37
10.2.2 Description . + « « « ¢« « « ¢« + o o + « +« « . 38
10.2.3 Options « « ¢« v & ¢« « o ¢« o o o « o « « + . 38
1024 Operands « « « « & ¢« & o o« o o o« o o o« « « . 38
10.2.5 External Influences 38
10.2.6 External Effects 39
10.2.7 Extended Description + « « « « + « « 39
10.2.8 Exit Status 12
10.2.9 Consequence of Errors . . - 1)
10.3 setfmac — Set the MAC Label of aFlle . 12
10.3.1 Synopsis .+ « « « & ¢« 4 4« 4 e e e e« + « « 39
10.3.2 Description . + ¢« « « ¢« + « ¢ + +« o + « « « o« 40
10.3.3 Options .« v ¢« v & « « 4 o « e+« e« e +« « « o 40
10.3.4 Operands . « « « « ¢« « & « « o o o o o« « o « 40
10.3.5 External Influences 40
10.3.6 External Effects 41
10.3.7 Extended Description 41

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

il

SECTION

10.3.8 Exit Status
10.3.9 Consequence of Errors

Section 11: Information Labeling

Annex E (informative) Revisions to the General Section

iv

11.1 getfinf — Get File Information Label

11.2 getpinf — Get Process Information Label

11.3 setfinf — Change File Information Label

E.8

E.10

E.11

E.12

11.1.1 Synopsis

11.1.2 Description

11.1.3 Options

11.1.4 Operands .

11.1.5 External Influences
11.1.6 External Effects

11.1.7 Extended Description
11.1.8 Exit Status

11.1.9 Consequences of Errors

11.2.1 Synopsis

11.2.2 Description

11.2.3 Options

11.2.4 Operands . ..
11.2.5 External Influences
11.2.6 External Effects

11.2.7 Extended Description
11.2.8 Exit Status

11.2.9 Consequences of Errors

11.3.1 Synopsis

11.3.2 Description

11.3.3 Options

11.3.4 Operands .

11.3.5 External Influences
11.3.6 External Effects

11.3.7 Extended Description
11.3.8 Exit Status

11.3.9 Consequences of Errors

Access Control Lists . .
E.8.1 User-Level Utilities
Capability

E.10.1 Capability- Related Ut111t1es

Mandatory Access Control
E.11.1 General Overview .
E.11.2 Separate Utilities

E.11.3 Label Input and Output .

E.11.4 Utility use of Capabilities
Information Labeling

E.12.1 General Overview .
E.12.2 Separate Utilities

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

PAGE

41
41

43
43
43
43
43
44
44
45
45
45
45
46
46
46
46
46
46
47
47
47
47
48
48
48
48
48
48
49
49
49
50

51
59
59
67
67
68
68
68
69
69
69
69
70

SECTION PAGE

E.12.3 Label Input and Output 70
Annex F (informative) Ballot Instructions 71
IdentifierIndex + o . o+ o o o o . . . 83
TopicalIndex+ « ¢« + ¢ ¢ « ¢« ¢« & o « « « « « . 88

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

